
 

 
Supplementary Materials for 

 
Ephemeral stream water contributions to United States drainage networks 

 
Craig B. Brinkerhoff et al. 

 
Corresponding author: Craig B. Brinkerhoff, cbrinkerhoff@umass.edu 

 

Science 384, 1476 (2024) 

DOI: 10.1126/science.adg9430 

 

The PDF file includes: 

 

Materials and Methods 

Supplementary Text 

Figs. S1 to S32 

Tables S1 to S4 

References 



1 

5 

10 

Materials and Methods 

All modeling and analysis was performed on the Unity Cluster at the Massachusetts Green High 

Performance Computing Center (MGHPCC) using publicly available datasets, models, and 

entirely free and open-source geoprocessing tools in the R programming language. All data and 

models used in this analysis are described in Table S1. 15 

1 Drainage network framework 

1.1 Overview 

We use the United States Geological Survey (USGS) National Hydrography Dataset High-

Resolution (NHD-HR) built at 1:24,000 map scale (22) for our drainage network hydrography. We 

use the data publicly available as of Spring 2022. This is the highest resolution hydrography data 20 

available and is often treated as a gold-standard to benchmark hydrography models against. The 

NHD-HR is discretized into ‘reaches’, which correspond to mass-conserved segments of rivers, 

streams, ditches, canals, lakes, and reservoirs. Note that the NHD-HR often includes estuarine bays 

within its hydrography. To remain consistent across the United States, we did not separate these 

waters from the other freshwater rivers. We treat these reaches as part of the CONUS river system, 25 

even if they have an estuarine influence. In relevant basins, this will generally provide a more 

conservative estimate of the ephemeral influence relative to removing these reaches, as it allows 

for additional dilution by perennial reaches (section 3.1). The NHD-HR uses artificial flowpaths 

to maintain network topology through lakes and reservoirs, and here we use a previously developed 

routing framework to handle complex lakes/reservoirs with multiple river inflows during our 30 

routing (23). The NHD-HR also includes nested drainage basins across 12 levels, where higher 

level sub-basins are hierarchically nested within lower level basins. As described in the Main Text, 
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we run our model at each fourth level basin (HUC4), summarizing results at this scale (Fig. 1a). 

Our mapping validation is done at the 2nd level due to limited in situ data availability in some 

fourth level basins. 35 

As with all human-built products, NHD-HR data quality varies across CONUS. We identified 

significantly higher drainage densities in the NHD-HR for the state of Indiana (often 1-2x the 

stream orders as other portions of a given basin in adjacent states). For these basins, we manually 

removed the lowest one or two stream orders within the Indiana portions of the basin, until the 

whole-basin drainage density was visually consistent across state lines. We also remove all 40 

divergent reaches, i.e. minor flowpaths that diverge from the main downstream path of flow. We 

do not remove the rest of the flowpath downstream of a divergent reach if there was another, non-

divergent source that joined and made the path no longer divergent. Divergent channels are 

generally alternative flowpaths in multi-channel rivers, and so we remove them to avoid double-

counting rivers. 45 

1.2 Discharge model 

Each reach is associated with a mean annual discharge 𝑄‾  as modeled by an existing USGS surface 

hydrology model (22). They modeled mean annual runoff by closing a water balance using 

auxiliary datasets for mean annual precipitation, evapotranspiration (ET), and soil moisture 

storage. ET losses were not allowed to surpass precipitation. They then overlaid the resulting 50 

runoff atop the CONUS catchments and finally routed it downstream to produce mean annual 

discharge. The routing scheme also accounts for ET losses from the river surface (22). While 

developed for mean annual flow for 1970-2000, we re-validate the model for 1970-2018 to confirm 

its usefulness over the entire re-analysis period (Fig. S4b). We validate the discharge model for 

1970-2018 using all USGS streamgauges with at least 20 years of data within that time period. For 55 

additional validation in ephemeral streams, this dataset is supplemented with mean annual flow 

estimates from USGS streamgauges in ephemeral/intermittent streams, as defined by various 

workers in USGS reports (50–54). For these sites, we do not require at least 20 years of data. To 

quality control the sites flagged as ephemeral for later use (section 4), we use satellite imagery and 

hydrograph analysis to manually verify that they are not more representative of an intermittent 60 

river, i.e. visual and graphical signs of persistent baseflow, persistently waterlogged soils, riparian 

zones with rooty vegetation. For all other streamgauges with at least 20 years of data, we identify 

ephemeral/intermittent streams as those that (on average) run dry at least 5 days a year, 

acknowledging that sometimes zero-flow readings at streamgauges reflect other scenarios than a 

dry channel (55, 56). Validation results are discussed in Supplementary Materials S1 and plotted 65 

in Fig. S4b. In total, we validate the discharge model at 4,053 rivers. 

It is worth noting that ephemeral streams establish losing conditions when flowing, i.e. the 

direction of the hydraulic head facilitates ‘transmission losses’ of water from river channel to soils 

and eventually groundwater (57–59). Transmission losses from ephemeral streams are generally 

of two types: groundwater recharge or evapotranspiration from the water surface and riparian 70 

corridor. In arid basins, the latter generally dominate transmission losses (59). The discharge 

model and flow accumulation procedure that we use (22) accounts for evapotranspirative 

transmission losses on an annual timescale, using a model of excess evapotranspiration from the 

river corridor for arid basins. For non-arid basins, infiltration of ephemeral flow often recharges 

catchment groundwater and resurfaces several stream orders downstream (60). The discharge 75 
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model does not explicitly account for this phenomenon in its flow accumulation procedure. Despite 

this, the model’s estimation biases were approximately similar across perennial and non-perennial 

rivers (Fig. S4b). This is presumably due to other model uncertainties outweighing the 

uncertainties associated with transmission losses. Because these biases are similarly distributed, 

and we use relative metrics such as the percent of total flow when reporting results, uncertainties 80 

associated with ephemeral transmission losses likely do not meaningfully influence our 

conclusions at this scale. 

1.3 Hydraulic Geometry 

We use hydraulic scaling to obtain estimates of bankfull river depth and mean annual lake/reservoir 

depth (necessary to assess ephemerality- Section 3.1). For rivers, we use the relation from (21), 85 

who fit equations of the form 𝐻𝑏 = 𝑎𝐴𝑐
𝑏, where 𝐻𝑏 is field-measured bankfull depth and 𝐴𝑐 is the 

river’s drainage area, to eight physiographic regions across the United States (Fig. S30). They had 

over 1,300 sites in total with field-verified bankfull depths to fit their regional models. For lakes 

and reservoirs, we use mass-conservation to obtain average depths from lake/reservoir volume 

(Vol) and surface area SA. Vol was scaled using an equation of the form 𝑉𝑜𝑙 = 𝑎(𝑆𝐴)1.2 (61), 90 

developed using a global dataset of lake morphometry and the Hurst coefficient for self-affine 

surfaces. 

1.4 In situ data on stream ephemerality 

We use a dataset of in situ assessments of ‘stream ephemerality’ to validate our stream 

classification model. This dataset comes from three sources: 1) EPA WOTUS jurisdictional 95 

determinations, 2) USGS streamgauges, and 3) field assessments of New England streams. Each 

dataset is described below. 

The EPA ‘Waters of the United States’ (WOTUS) jurisdictional determinations dataset (62) 

consists of field assessments performed by EPA workers made at landowners’ requests, where 

status was determined under the at-the-time definition for WOTUS extent. We use the data 100 

available as of 06/20/2022 when downloaded. We filter this dataset to include only determinations 

made under the Navigable Waters Protection Rule (NWPR- 30) after it was enacted in 2020, which 

includes an explicit category for ephemeral streams. This amounts to over 60,000 distinct 

jurisdictional determinations (often including multiple determinations in the same reach, over 

space and time) and forms the bulk of our dataset. To make the dataset copacetic with our model, 105 

we remove data not associated with surface water features directly connected to the drainage 

network: adjacent/riparian wetlands, drylands, upland terrestrial sites, upland or non-adjacent 

wetlands/ponds/depressions, croplands, wastewater plants, and groundwater. We retained all other 

determinations that are directly connected to the drainage network (rivers, lakes, reservoirs, canals, 

ditches, stormwater control features, and artificial surface water features) and recast all 110 

determinations as ephemeral or non-ephemeral. 

We supplement the jurisdictional determinations dataset with the USGS streamgauge network. 

Because the EPA jurisdictional determinations are done on a voluntary basis at landowners’ 

requests, it is biased towards waterbodies whose WOTUS status is not so easily discerned. Thus, 

the EPA jurisdictional determinations rarely include larger (usually perennial) rivers. To make 115 

sure we are also correctly classifying larger rivers, we include gauged rivers (section 1.2) in our 
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validation. All gauged rivers that, on average, are flowing 95% of the year are conservatively 

assumed to be non-ephemeral, and are added to the dataset as such. 

Finally, we manually assess stream ephemerality in northeastern CONUS because our validation 

data includes no ephemeral reaches in this region. We follow the ‘expert protocol’ used by North 120 

Carolina’s department of Water Quality for assessing stream ephemerality (63). This protocol uses 

geomorphic, hydrologic, and biotic indicators of seasonally and/or permanently high water tables 

to assess stream permanence. We use our local knowledge to identify streams we thought are likely 

to be ephemeral, verify they are present in the NHD-HR (but did not look at the model result a 

priori to avoid biasing our assessments) and assess the channels following the protocol. 125 

Classification results are in Table S4 for the five sites. All streams are assessed over 48 hours from 

the most recent rain event to avoid the influence of delayed runoff in the channel that might be 

mistaken for baseflow. Note that we do not perform full soil assessments nor species counts as the 

protocol technically specifies, but instead perform rapid visual assessments that favor speed of 

classification over thoroughness. Per the protocol, none of these channels are close enough to being 130 

classified as intermittent (Table S4) that we feel confident our rapid assessments are sufficient. 

While we only assess five ephemeral rivers, they provide at least some validation data in 

northeastern CONUS. 

We join the three datasets to the NHD-HR by snapping each field assessment to the nearest reach. 

Despite its high resolution, the NHD-HR does not contain every stream in CONUS and many of 135 

the field sites are not expected to be associated with a reach. We settle on a threshold of 10m. The 

tests and rationale used to drive this decision are explained in section 3.3. After snapping, we 

assign the most frequently occurring field assessment along the reach as its ‘true assessment of 

ephemerality’. If there is a tie between frequency of occurrence (meaning there is no consensus on 

whether the reach is ephemeral or non-ephemeral), we remove those points from the dataset. 140 

Ultimately, we have 7,207 field assessments of reach ephemerality to validate our model. Fig. S5b 

maps the regional distribution of these data. 

2 Calculating ephemeral contributions 

We calculate the ephemeral percent of discharge (equation S1) and drainage area (equation S2) for 

all 20,708,899 reaches by routing through the drainage network from upstream to downstream. 145 

When a basin discharges into a downstream drainage network, we pass the exporting reach’s value 

to the downstream basin’s corresponding reach. Routing between basins was facilitated by a 

custom routine which runs the drainage network routing in parallel across basins at the same 

‘processing level’ and then passes exported parameters of interest to the basins immediately 

downstream in the next processing level. To calculate the basin-exported values for equations S1 150 

and S2, we sum up the ephemeral percentages at all terminal reaches in the basin (sometimes rivers 

terminate endorheically and occasionally basins have two or more outlets) and then re-calculate 

equations S1 and S2. We also calculate the mean annual ephemeral flow frequency (equation S3, 

section 4). 

More specifically, the ephemeral contribution to discharge 𝐸𝑄 (equation S1) is the average of each 155 

discharge source’s ephemeral contribution, weighted by discharge to favor larger water sources. k 

refers to each reach directly upstream and 𝑄𝑙 is the lateral runoff contribution from the current 

reach’s catchment. 𝐸𝑄𝑙 is set to 1 for ephemeral streams and 0 for non-ephemeral streams. For 
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losing streams (when discharge decreases downstream due to evapotranspirative losses or 

groundwater seepage), 𝐸𝑄𝑙 is set to 0 as there is no lateral contribution into the stream channel. 160 

Equation S1 is mapped in Fig. 1a. 

𝐸𝑄 =
∑ (𝐸𝑄𝑘𝑄𝑘
𝐾
𝑘=1 ) + 𝐸𝑄𝑙𝑄𝑙

∑ (𝑄𝑘)
𝐾
𝑘=1 + 𝑄𝑙

(𝐒𝟏) 

The ephemeral percent of drainage area 𝐸𝐴 (equation S2) is the average of each discharge source’s 

ephemeral drainage area, weighted by drainage area to favor larger water sources. A is the upstream 

drainage area. Equation S2 is mapped in Fig. S29. 165 

𝐸𝐴 =
∑ (𝐸𝐴𝑘𝐴𝑘
𝐾
𝑘=1 ) + 𝐸𝐴𝑙𝐴𝑙

∑ (𝐴𝑘)
𝐾
𝑘=1 + 𝐴𝑙

(𝐒𝟐) 

Finally, we calculate basin-average ephemeral flow frequency 𝑁𝑓𝑙𝑤 (equation S3) as the percent 

of an average year (in days) that ephemeral streams are flowing, where i is mean daily runoff depth 

and 𝑖𝑚𝑖𝑛 is an operational runoff threshold for day d in the 27-year record Y. This calculation is 

elaborated on in section 4. Equation S3 is mapped in Fig. 3a. 170 

𝑁𝑓𝑙𝑤 = ∑ ( ∑ (𝑖 ≥ 𝑖𝑚𝑖𝑛)

𝐷=365

𝑑=1

)

𝑌=27

𝑦=1

/27(𝐒𝟑) 

3 Identifying ephemeral streams 

3.1 Model 

We use a ~1km global soil hydrology model for mean monthly estimates of the water table depth 

(WTD)(19, 20). This model solves a vertical soil water balance as inferred from remotely sensed 175 

leaf area index (20). It ignores local, perched aquifers and anthropogenic pumping in favor of a 

broad, long-term average WTD, as is common in global-scale groundwater models (64, 65). 

Ignoring pumping likely leads to an underestimation of ephemeral streams, as the modeled water 

table is artificially high relative to the observed water table that has been lowered by pumping. 

Under these cases, we likely mis-classify ephemeral streams as perennial and thus underestimate 180 

the total ephemeral influence in an intensively pumped region. To quantify the influence of using 

a coarse, global-scale groundwater model, we validate it against in situ mean monthly water table 

depths (62,000+ observations over 12 months at 5,228 sites). We use only USGS groundwater 

wells and USGS stream gauges with at least twenty years of data. We use stream gauges that flow 

100% of the time to validate places where the water table should be approximately 0m deep (while 185 

an approximation, this provides a much more representative validation dataset). The results of this 

validation are described in Supplementary Materials S1 and Fig. S8. 

Definitions for ephemeral and non-perennial streams vary considerably across scientific 

communities, regulatory communities, and jurisdictions. For example, the U.S. EPA allows states 

to adopt different definitions for ephemeral and intermittent streams (66) and these definitions are 190 

frequently changing (67). For the purposes of this study, we use the US EPA’s standard working 

definition for ephemeral streams: ephemeral channels only flow in direct response to precipitation 
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(e.g. 30). More intuitively, ephemeral streams ‘fill up’ while intermittent streams ‘run dry’. We 

confirm this definition is also used across all of our validation data for consistency. 

Because ephemeral streams flow only in direct response to rainfall, it follows that there is no 195 

sustained stream-groundwater connection to facilitate baseflow in ephemeral channels. Thus, we 

assume that ephemeral stream channels must be perched above the water table over the entire year 

(Fig. S1). This theory underpins our entire ephemeral classification model. To apply this theory, 

we extract the median WTD along all 20,708,899 discrete reaches for all 12 months. We then 

compare each monthly water table depth to the bankfull depth: the ‘depth to channel bottom’. If 200 

the water table is deeper than the ‘depth to channel bottom’ for all 12 months, the river is classified 

as ephemeral (see Fig. S1 for an overview flowchart of the model). To avoid mis-classifying 

streams with an intermittently high/low water table, this must hold true for all twelve months of 

the year. We treat all ‘main ponded waters’, i.e. lakes/reservoirs ≥ 0.01𝑘𝑚2 (68), as non-

ephemeral to ensure that perennial waterbodies are not mis-classified. 205 

Then, we route through the network from upstream to downstream and amend our initial 

classification to a more conservative estimate. Specifically, if a drainage path has a 

perennial/intermittent river or main ponded water immediately upstream of it, the current reach 

must also be non-ephemeral. It is well established that losing streams can lead to disconnected 

flowpaths at given points in time when their subsurface is able to accommodate all of the flow 210 

(69). When integrated over annual timescales, any amount of intermittent surface-groundwater 

connectivity will contribute groundwater-sourced flow to the immediately downstream channel, 

rendering it non-ephemeral (at least for how we have defined ephemeral streams over annual 

timescales). Endorheic outlets are already accounted for in our model. We also handle two other 

scenarios: 215 

• We only count rivers/streams as ephemeral and recast all canals, ditches, and small ponds 

(waterbodies < 0.01𝑘𝑚2) as non-ephemeral. These features fall under different WOTUS 

rules and are not the focus of this study. 

• While Mexican and Canadian ephemeral streams contribute discharge to the CONUS 

drainage network, our focus is on CONUS rivers. These streams are thus recast as non-220 

ephemeral. If these foreign streams are larger than first order, however, we assume they 

are non-ephemeral and thus the model sets the CONUS stream they flow into as non-

ephemeral. 

3.2 Validation 

Ephemeral classification accuracy is assessed using the in situ ephemerality dataset (Section 1.4). 225 

We assess performance using regional classification accuracy, sensitivity (the true positive rate), 

specificity (the true negative rate), and “informedness”, which is also called the true skill statistic 

(TSS) or Youden’s J depending on the literature (70). See Table S3 for metric definitions. TSS is 

equal to the sensitivity + specificity - 1. It intuitively represents the performance improvement 

over a random classifier, i.e. a score of zero indicates that the model is equivalent to random 230 

guessing. Mathematically, TSS equals the distance (in units of sensitivity) between a point on the 

receiver operating characteristic (ROC) curve and a random classifier. TSS is more robust to class 

imbalances than simple percent accuracy and it has been used in the past to assess headwater and 

ephemeral mapping models (11–13). We therefore use it here as well to compare against existing 



7 

 

studies. Regional accuracy is mapped in Fig. S4, regional TSS is mapped in Fig. S5, regional 235 

sensitivity and specificity are mapped in Fig. S3, and boxplots of all metrics are Fig. S7. The 

validation results are discussed in Supplementary Materials S1. 

3.3 Choosing a validation snapping threshold 

In general, classification performance should decrease as the snapping threshold increases because 

the in situ data will be assigned to the wrong rivers. So, we test the sensitivity of our model to this 240 

threshold to inform our choice of parameter value. 

First, we re-project all data using the Universal Transverse Mercator (UTM) projection system to 

ensure snapping distances are regionally accurate. Then, we test a range of snapping thresholds 

from 5m to 50m and assess ephemeral classification accuracy (Fig. S10). We also test which 

snapping thresholds reproduce expected network scaling patterns according to Horton’s law of 245 

stream numbers (71). Equation S4 is the Horton law of stream numbers, which is a power-law 

function relating stream order 𝑆𝑂𝑚 to the number of streams in the 𝑚𝑡ℎ order 𝑁𝑚 (71). 𝑅𝐵 is the 

Horton ratio and 𝑁𝑚𝑎𝑥 is the number of streams in the largest order. 𝑅𝐵 is solved via least-squares 

regression. 

𝑁𝑚 = 𝑁𝑚𝑎𝑥 ∗ 𝑅𝐵
𝑆𝑂𝑚𝑎𝑥−𝑆𝑂𝑚(𝐒𝟒) 250 

We fit equation S4 to our in situ ephemerality data after snapping to the NHD-HR using some 

threshold. We then assess how well the observed 𝑁𝑚 (section 1.4) matches the 𝑁𝑚 predicted by 

Horton’s laws (equation S4). This approach assumes the following: 

• Ephemeral streams aggregated from many CONUS drainage networks will fit a single 

Horton scaling. Horton laws are a statistical inevitability of stream ordering and do not 255 

represent an inherent geomorphic process (72–74), but rather arise from hydrography 

resolution and channelization definitions. Because we use a CONUS-scale product with 

consistent stream ordering, this is reasonable. 

• The in situ ephemerality data (section 1.4) is representative of the actual distribution of 

ephemeral streams across CONUS. Because these data consist of voluntary field 260 

assessments, it is likely an underestimate of ephemeral stream presence. Actual estimates 

are presumably even greater. 

Overall, we find that the ephemeral river network most closely matches expected network scaling 

with a snapping threshold of 5-15m (Fig. S11). Otherwise, this scaling relationship begins to break 

down. Taking Figs. S10-S11 in aggregate, we find a snapping threshold of 10m to be most 265 

appropriate for our purposes. This threshold also conveniently allows a direct comparison against 

the only existing ephemeral classification model (12), built using 10m gridded flow accumulation 

data. 

3.4 Influence of hydrography resolution 

Given that much of the in situ ephemerality data does not fall on the mapped drainage network and 270 

instead corresponds to streams too small to be explicitly represented in the NHD-HR, we also 

assess 1) the amount of ephemeral streams we are missing, and 2) whether this matters for our 

goals of quantifying ephemeral contributions to CONUS discharge. To do this, equation S4 can be 
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re-expressed as equation S5 to calculate the ephemeral stream orders not represented in the NHD-

HR, where k is the minimum stream order. The in situ ephemerality data (section 1.4) provides us 275 

with 𝑁𝑘 enabling the direct calculation of 𝑆𝑂𝑘. This approach assumes that all streams in the scaled 

stream order(s) are ephemeral. Given that 84% of CONUS ‘source reach’ extent is ephemeral in 

our model, it is reasonable to assume that everything upstream of these is also ephemeral. 

𝑆𝑂𝑘 =
𝑙𝑜𝑔(𝑁𝑘) − 𝑙𝑜𝑔(𝑁𝑚𝑎𝑥) − 𝑆𝑂𝑚𝑎𝑥𝑙𝑜𝑔(𝑅𝐵)

−𝑙𝑜𝑔(𝑅𝐵)
(𝐒𝟓) 

Using equation S5, we find that one additional ephemeral stream order would need to be added to 280 

the NHD-HR to reproduce the field data distribution (Fig. S12). The likely significant omission 

errors in the in situ ephemerality data suggest that one additional stream order is a conservative 

estimate. This has different implications for our various results. Because discharge generally 

accumulates downstream, we can assume that our model’s headwater ephemeral discharge 

contributions (Fig. 2a) implicitly include the scaled ephemeral stream order as well, despite not 285 

being explicitly mapped in the NHD-HR. This may inflate the influence of first-order streams (Fig. 

2a), but it does not influence the basin-wide results (Fig. 1). However, it does significantly affect 

our ephemeral network extent (Fig. 4), which should be taken as a conservative estimate as we 

cannot verify how many ephemeral orders might lie above the NHD’s ‘first’ order streams. 

4 Estimating ephemeral flow frequency 290 

We estimate the basin-average flow frequency of ephemeral streams via the mean annual number 

of days per year that they flow (𝑁𝑓𝑙𝑤- equation S3). We do this using mean annual, basin-averaged 

runoff data measured at streamgauges (43) and 27 years of daily interpolated precipitation data for 

1980-2006 (42, 75). The model is purposefully simple but globally scalable (Fig. 3). 

4.1 Data 295 

We use field data only to determine an operational runoff threshold, as well to verify the model’s 

performance. Note that in situ 𝑁𝑓𝑙𝑤 data is relatively uncommon and measured using different 

sensors (streamgauges, temporary flumes, and electrical resistance senors). To our knowledge, we 

use all existing field data (76–83) that provides sufficient information to calculate 𝑁𝑓𝑙𝑤 (Table S2 

details the studies). We also supplement this data with the ephemeral USGS streamgauges 300 

previously described in section 1.2. To get all data in a uniform format, we calculate mean annual 

𝑁𝑓𝑙𝑤 at each sensor (if applicable), and then take the catchment average 𝑁𝑓𝑙𝑤 across the sensed 

streams (again, if applicable). This averaging was not done in catchments with insufficient data 

and therefore significant uncertainties exist in many of these estimates. Despite these uncertainties, 

this limited data is to our knowledge the largest collection of in situ 𝑁𝑓𝑙𝑤 measurements. 305 

Length of the timeseries varies significantly, from approximately 1/3 of a year (83) to 45 years of 

sub-daily data in the Walnut Gulch Experimental Watershed (80). Data from (83) exist for three 

sites within a catchment in Ontario that do not flow into the United States. However, they are 

located approximately 15 km from one of our model basins that does flow into the United States 

(Fig. 3a) and so we use that basin for verification. Additionally, that data is only for 1/3 of the year 310 

(approximately July to October). To obtain a mean annual estimate, we assumed the frequency of 

flow was the same year round, i.e. we tripled the 𝑁𝑓𝑙𝑤 measured in their study. Likewise, (77) only 

assessed their streams for the latter half of a year, though reports indicate that flow generally occurs 
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only 1-2 times in the remaining months (84), so we added that to the calculation. Finally, one site 

(76) includes an intermittent main stem where the flow was measured, however the rest of the 315 

drainage system is ephemeral (76). 

4.2 Model 

Streams are traditionally viewed as a surficial expression of groundwater (57). However, by 

definition ephemeral streams extend beyond the boundary of the surface extent of groundwater 

(85). Because they have no groundwater component, 𝑁𝑓𝑙𝑤 is purely controlled by surface runoff 320 

and interflow. This assumption significantly simplifies our modeling and enables the estimation 

of 𝑁𝑓𝑙𝑤 solely via surface runoff generation. 

In that context, we first calculate a mean annual basin runoff ratio 𝑖𝑟 to convert precipitation P to 

stream runoff i and vice versa. The runoff ratio (equation S6) reflects the proportion of rainfall on 

the basin that winds up as stream runoff, where the implicit losses are via groundwater recharge 325 

and evapotranspiration. Using a mean annual 𝑖𝑟 also implicitly accounts for snowmelt runoff in 

winter. 

𝑖𝑟 =
𝑖

𝑃
(𝐒𝟔) 

We convert daily precipitation depth to daily, basin-averaged stream runoff depth using 𝑖𝑟. Per 

equation S3, streamflow occurs when daily runoff exceeds some operational runoff threshold. We 330 

tally all days when flow occurs over the 27 years and calculate a mean annual 𝑁𝑓𝑙𝑤, which is 

mapped in Fig. 3a. For a handful of basins on the Mexican/Canadian borders, there are no USGS 

gauges and no 𝑖𝑟 data. We use the mean annual runoff values from adjacent basins (the “closest” 

as assessed visually) and assume it holds constant in these basins. We perform a sensitivity test of 

the 𝑖𝑟 data, as it is biased towards gauged, often larger, rivers. For this test, we use equation S3 335 

and run the model under four scenarios: inflating and deflating the runoff ratio by 18% and 33%. 

Across CONUS, results change minimally (Fig. S13). 

We also parameterize watershed ‘memory’: a bulk parameter representing all delayed runoff to the 

drainage network. More practically, the memory parameter keeps streams ‘turned on’ for a number 

of days following a day identified as flowing. Memory parameter assignment was guided by a 340 

recent analysis (86), which calculated the streamflow memory of rain events for 671 watersheds 

in CONUS (including many with groundwater influence). They found a median memory of 

approximately four days, which is used here. 

The operational 𝑖𝑚𝑖𝑛 is determined using the 𝑁𝑓𝑙𝑤 field data (section 4.1) as (to our knowledge) 

there is no consensus on what runoff depth defines a flowing stream and even then there are known 345 

limitations to measuring low flows in the field (56). Further, the coarse spatial resolution of our 

precipitation data can’t reconcile sub-pixel heterogeneity and thus limits our ability to remotely 

sense the smallest runoff events (potentially inflating the smallest rain events at the sub-pixel 

scale). So, we calibrate 𝑖𝑚𝑖𝑛 in lieu of other available data, acknowledging that this operational 

definition of 𝑖𝑚𝑖𝑛 may change with additional field measurements of 𝑁𝑓𝑙𝑤. We use the coefficient 350 

of determination 𝑟2, the mean absolute error (MAE) and the root mean square error (RMSE) to 

determine the best performing 𝑖𝑚𝑖𝑛 of approximately 2.5 mm/day (Fig. 3b-c, Fig. S31). We express 

uncertainty in the average estimate as 1 standard error (SE) of the regression between predicted 
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and observed. We stress that because of the limited and highly uncertain data on 𝑁𝑓𝑙𝑤 and the 

necessary calibration of 𝑖𝑚𝑖𝑛, we refer to this as a model verification: all we can do is confirm that 355 

the model is reasonably realistic. 

Supplementary Materials S1 

Discharge model performance 

The discharge model accurately captures mean annual discharges for 1970-2018 across both 

perennial and non-perennial streams (Fig. S4). This performance is similar to another discharge 360 

model used to map global river intermittency (8). 

Groundwater model performance 

The log-residuals of the groundwater model validation (Fig. S8) show reasonable performance for 

a global model. The resulting errors are similar to the previous global validation of this model (19, 

20) and other similar models (64, 65). The small bias underestimating the water table depth (mean 365 

residual of -0.236 meters) is likely due to not simulating groundwater pumping. This leads to an 

underestimation of ephemeral streams which is discussed in the Main Text. 

Ephemeral classification performance 

Ephemeral mapping performance varies across the United States. Regional average TSS is 0.66 

(Fig. S5a), average regional accuracy is 86% (Fig. S4a), average regional sensitivity is 81% (Fig. 370 

S6a) and average regional specificity was 86% (Fig. S6b). Performance is best in northeastern 

CONUS and western CONUS (average TSS of 0.79), while performance is worse in the Ohio and 

Lower Mississippi river basins (average TSS of 0.42). Overall, we outperform the only two existing 

CONUS ephemeral stream maps. (12) reported a CONUS TSS of 0.45, sensitivity of 63%, and 

specificity of 83% and (14), who mapped ephemeral streams using deep learning models for 375 

thousands of locations around CONUS, reported an ephemeral classification accuracy of 75%. 

Overall performance in an ephemeral catchment 

The Walnut Gulch experimental watershed in Arizona is home to one of the longest continuous 

ephemeral streamgauge records in the world and features an in situ flume network that enables 

whole-watershed studies for arid hydrology (80). The entire watershed drainage network is 380 

ephemeral. Here, we verify that our model 1) reproduces the completely-ephemeral drainage 

system (Fig. S9a) and 2) reproduces the mean annual ephemeral discharges throughout the 

drainage network (Fig. S9b). 

Equations S1 and S2 performance 

At continental scales, it is impossible to validate equations S1 and S2 in a traditional sense. To 385 

broadly verify that our calculations make sense, we use Tokunaga ratios to compare our modeled 

metric to an independent, back-of-the-envelope metric obtained from Tokunaga scaling (Fig. S4c). 

This approach we extends previous work (17) that used Tokunaga network scaling in the 

northeastern US to verify relative headwater contributions to downstream discharge. Tokunaga 

ratios represent the average number of upstream reaches that flow into the average reach per stream 390 

order (17, 34). Assuming that discharge accumulates downstream, relative ephemeral Tokunaga 
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ratios should be approximately similar to our routing calculations, i.e. if 50% of upstream rivers 

are ephemeral, than 50% of discharge would be ephemerally sourced in a perfectly gaining 

watershed. 

To do this, we calculate the average cumulative length of upstream ephemeral rivers per stream 395 

order. We use network length rather than number of reaches to handle the artificial paths necessary 

to incorporate lakes and reservoirs into the drainage network (23). For the largest stream order, we 

then divide this value by the total network length to obtain a relative upstream contribution to the 

watershed mouth. When compared against our moddel (Fig. S4c), we confirm our results are in 

line with those obtained independnetly by network scaling theory. This provides additional 400 

confirmation that our model produces reasonable metrics. 

Potential uncertainties 

Potential model uncertainties center on the bankfull depth model and the water table model. 

For the water table model (19, 20), uncertainties come from (1) general model performance and 

(2) the model’s spatial resolution (~1km). For the former, we validate the mean monthly water 405 

table depths at over 5,000 sites (over 60,000 total validation points for 12 months) across CONUS 

and define a log-error distribution (mean: -0.236m, sd: 0.678m), see Fig. S8. For the latter, our 

two primary concerns are resolution misalignment between the hydrography and the groundwater 

model and/or spatial misalignment, i.e. errors in river location in steep terrain might map streams 

into the ‘next pixel over’. 410 

For resolution misalignment, we use the Cedar Brook Catchment in New Hampshire’s White 

Mountains (Fig. S15) as an illustrative example to show the groundwater model resolution (~1km) 

compared to the NHD-HR hydrography resolution (average reach length across all CONUS basins 

of 1.8 km). The approximately equal resolutions suggest that it is not a significant source of error. 

Also note that resolution uncertainty is already implicit in our groundwater validation: we 415 

validated point-based well depths against a ~1km gridded model (Fig. S8). This will capture any 

resolution-induced errors between wells and the model. 

Spatial misalignment is reasonably handled by our summarizing along the reaches: when there are 

multiple pixels along a reach, we take the median water table value to capture a representative, 

reach-scale picture of water table depths (Fig. S15) that are robust to misalignment. Finally, recall 420 

that after the initial classification comparing ‘depth to channel bottom’ to ‘depth to water table’, 

we use network routing to fix any artifacts that might arise from errors in the water table model. 

These steps in the algorithm significantly reduce the influence of potential resolution errors. 

For the bankfull depth model, uncertainties come from (1) statistical performance of the power-

law scaling and (2) the specific field measurement dataset used to fit the scaling relationship. (1) 425 

is an error of how well a power law represents bankfull depth, which is influenced by the fact that 

studies establishing this power law come from well-behaved alluvial systems that aren’t 

necessarily representative of all streams (particularly steep headwaters). (2) provides the degrees 

of freedom, scale, and heterogeneity to assess (1). To quantify this, we use the log-residuals of (1) 

to characterize error distributions per physiographic region (mean range: 0-0m, sd range: 0.12-430 

0.254m) using the most extensive dataset to our knowledge of in situ bankfull depth measurements 

(21). This dataset includes field-measured bankfull depth in a range of rivers, from large (100+m 

wide) well-behaved channels to smaller ones less than a meter wide. While there are still 



12 

 

uncertainties baked into this approach, we feel it is the most robust we can produce given the 

currently available data. 435 

Quantification of uncertainty 

We use Monte Carlo simulations to quantify the uncertainty in our main results (Figs. 1, Eq S1). 

Specifically, we push the two uncertainties defined above for water table depth (Fig. S8) and 

bankfull depth (21) through the entire modeling pipeline to build distributions of model results 

(Fig. S8). It is computationally infeasible to do this for the entire CONUS domain, so we focus on 440 

five smaller drainage basins that cover the major physiographic regions of the United States. For 

each reach, we randomly sample both error terms, add them to the modeled values, and run the 

pipeline. We did this 1,000 times in each basin. 

In these five test basins, we find that our model results vary very little and that the standard 

deviation of these uncertainty distributions is < 1% (Fig. S14). This suggests that uncertainties in 445 

the bankfull depth and the water table depth only marginally affect the final results. In the 

Suwannee basin in Florida/Georgia, where much of the water table is very shallow, uncertainties 

are slightly greater but still well within acceptable values (Fig. S14). 
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Supplementary Figures 

 450 

Figure S1: Flowchart of ephemeral classification algorithm. Green are data inputs to our model. 

Purple are model outputs. Grey box is the actual classification algorithm. Superscripts refer to 

references for off-the-shelf data/models. When appropriate, we point to the figures for each result. 

See Methods for more detail. 
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 455 

Figure S2: Flowchart of study validation and uncertainty analysis. Green are independent data 

used for validation. Purple indicates model outputs. Blue are validation outputs. Superscripts refer 

to references for off-the-shelf data/models. When appropriate, we point to the figures for each 

result.  
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 460 

Figure S3: Flowchart of ephemeral flow frequency analysis. Green are data inputs to our model. 

Purple are model outputs. Blue are validation outputs. Superscripts refer to references for off-the-

shelf data/models. When appropriate, we point to the figures for each result. See Methods for 

details. 

  465 
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Figure S4: Main validation of the primary model components: (A) Regional classification 

accuracy of the ephemeral stream map against approximately 7,000 independent in situ 

assessments of stream ephemerality. (B) Validation of mean annual discharge model at 

approximately 4,000 streams across CONUS. Note that some of the non-perennial sites were 470 

manually snapped to the NHD-HR to provide additional discharge validation. For quality control, 

these sites correspond to those with reported drainage areas within 20% of the drainage areas 

reported in the NHD-HR. (C) Verification that equation S1 is theoretically anticipated by network 

scaling theory. Only basins completely within the United States are used for this verification- see 

Supplementary Materials S1 for details on the calculation. Dashed grey lines are the 1:1 lines 475 

while black lines denote the linear regression.  
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Figure S5: Regional validation of the ephemeral stream map against approximately 7,000 

independent field assessments of stream ephemerality: (A) regional model true skill score (TSS) 

and (B) number of field-observations per region. See Table S3 for metric definitions. The greyed-480 

out region (‘Souris-Red-Rainy basin’) has no ephemeral validation data. See Supplementary 

Materials S1 for more details.  
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Figure S6: Regional validation of the ephemeral stream map against approximately 7,000 

independent field assessments of stream ephemerality: (A) regional model classification sensitivity 485 

and (B) specificity. The greyed-out region (‘Souris-Red-Rainy basin’) has no ephemeral validation 

data. See Supplementary Materials S1 for more details.  
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Figure S7: Boxplots of regional ephemeral classification performance, by accuracy metric 

(section 3.2). Red dots correspond to the mean values. See Table S3 for metric definitions. 490 
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Figure S8: Validation of mean monthly water table depths across the United States. Histogram of 

model log-residuals at groundwater wells and stream gauges (their distribution is mapped in the 

subplot). Wells are only those with at least 20 years of data and no deeper than 100m (19, 41) to 495 

calculate mean monthly well depths. Stream gauges are only those with at least 20 years of data 

and flowing 100% of the time. This means stream gauges represent perennial rivers with a relative 

water table depth of approximately 0m. 
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 500 

Figure S9: Field-scale model performance in the ephemeral Walnut Gulch experimental 

watershed. (A) Map of the model classification, indicating that we successfully identify the entire 

watershed as ephemeral. (B) Validation of the mean annual discharge model at in-situ flumes 

within the watershed, which are also mapped in (A). For quality control, these flume data 

correspond to all sites whose reported drainage areas are within 20% of the drainage areas 505 

reported in the NHD-HR. Dashed grey line is the 1:1 line while the black line denotes the linear 

regression. 
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Figure S10: : Sensitivity of ephemeral classification accuracy to the snapping threshold used to 510 

join in situ ephemerality data to the NHD-HR (section 3.3). Red points reflect the mean values. 
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Figure S11: : Using Horton stream order scaling to find a snapping threshold (section 3.3). Points 

and lines show how well the in situ ephemerality data (section 1.4) fits expected network scaling 515 

theory (equation S4) given a snapping threshold to the NHD-HR. Nm refers to the number of 

streams per order. Purple is the root mean square error (RMSE) and green is the mean absolute 

error (MAE) between the in situ Nm and the Nm predicted by Horton’s laws. Metrics should be 

smallest when the data best match Horton’s laws, indicating that we correctly capturing expected 

network patterns and are not miss-assigning field data to the wrong rivers. 520 
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Figure S12: : Scaling model for CONUS ephemeral stream network using in situ ephemerality 

data (section 1.4). Orange points represent ephemeral streams explicitly associated with NHD-

HR reaches while the green point represents ephemeral streams implicitly represented in our 525 

headwater hydrography (see section 3.4). 
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Figure S13: : Sensitivity test for 𝑁𝑓𝑙𝑤 (section 4.2). The white boxplot is the distribution of the 

actual model results presented in the paper. 530 
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Figure S14: : Uncertainty estimates (1 standard deviation from Monte Carlo simulations for our 

main metric: Eq. S1). We first parameterize uncertainty for both bankfull depth and water table 

depth (see Supplementary Materials S1). Then, we run 1,000 simulations of our model for each of 535 

the five basins. From those distributions, we use 1 standard deviation to characterize model 

uncertainty. All five uncertainties are < 1%. 
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Figure S15: Example of NHD-HR hydrography versus modeled water table depths for the Cedar 540 

Brook catchment in the Merrimack River basin (New Hampshire). After comparing water table 

depth to bankfull depth, we then route through the network to clean up impossible scenarios due 

to model artifacts. See Supplementary Materials for more details. 
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 545 

Figure S16: Drainage network hydrographies 1-16 of 205. Sub-plot titles refer to the relative and 

absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  550 
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Figure S17: Drainage network hydrographies 17-32 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 555 

these plots for visualization’s sake.  
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Figure S18: Drainage network hydrographies 33-48 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 560 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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Figure S19: Drainage network hydrographies 49-64 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 565 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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Figure S20: Drainage network hydrographies 65-80 of 205. Sub-plot titles refer to the relative 570 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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 575 

Figure S21: Drainage network hydrographies 81-96 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  580 
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Figure S22: Drainage network hydrographies 97-112 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 585 

these plots for visualization’s sake.  
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Figure S23: Drainage network hydrographies 113-128 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 590 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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Figure S24: Drainage network hydrographies 129-144 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 595 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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Figure S25: Drainage network hydrographies 145-160 of 205. Sub-plot titles refer to the relative 600 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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 605 

Figure S26: Drainage network hydrographies 161-176 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  610 
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Figure S27: Drainage network hydrographies 177-192 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 615 

these plots for visualization’s sake.  
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Figure S28: Drainage network hydrographies 193-205 of 205. Sub-plot titles refer to the relative 

and absolute values of discharge exported from drainage networks that is ephemerally sourced 

(equation S1). Reach width corresponds to the size of the river (specifically, the logarithmic bins 620 

of discharge relative to map scale). Note that foreign streams are mapped as ‘not ephemeral’ in 

these plots for visualization’s sake.  
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Figure S29: Contiguous United States map of the percent of upstream drainage area that 

contributes to ephemeral streams (equation S2). 625 
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Figure S30: Ephemeral contributions to United States drainage networks, separated by stream 

order and physiographic region (Fenneman & Johnson, 1946). Points correspond to the average 

across all basins predominately in each physiographic region. Note there is a single 10th order 630 

basin in the Appalachian Highlands, which causes the outlier value. 
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Figure S31: Determining an operational streamflow definition (𝑖𝑚𝑖𝑛) using the available 𝑁𝑓𝑙𝑤 

data (section 4.2). MAE is mean absolute error, RMSE is root mean square error, and r2 is the 635 

coefficient of determination. 
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Figure S32: Mean flowing month for ephemeral streams in each CONUS basin. Basins classed as 

‘None’ do not flow frequently enough for a mean flowing month. 640 
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Supplementary Tables 

Table S1: Summary of models and data used to drive our model and generate our results. In situ 

data for validation is described in sections 1.4 and 4.1. 

Variable Dataset Name Spatial 

Resolution 

Temporal 

Resolution 

Years 

captured 

Reference 

Hydrography USGS National 

Hydrography 

Dataset High 

Resolution (NHD-

HR) 

1:24,000 - Long-term (22) 

Discharge USGS Mean Annual 

Discharge Model 

1:24,000 Year 1970-2000 (22) 

Water Table 

Depth 

Fan Global Soil 

Hydrology Model 

30” Month 2004-2014 (19, 20) 

Precipitation CPC Unified Gauge-

Based Daily 

Precipitation Model 

0.25’ Day 1980-2006 (42, 75) 

Runoff USGS Runoff Data USGS level 

4 basins 

Year varies 

(from 

1901-2021) 

(43) 

  645 
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Table S2: In situ measurements of mean annual number of flowing days for ephemeral streams 

Drainage Basin Observed Nflw 

[dys] 

Number Sample 

Years 

Number 

Sites 

Reference 

Powder-Tongue 50 9 1 (51) 

Rio Grande-Elephant 

Butte 

21 19 2 (52) 

Rio Grande-Mimbres 5 8 1 (53) 

Upper Pecos 16 43 4 (53) 

White-Yampa 16 7 6 (54) 

San Juan 72 7 11 (52) 

Lower Colorado-Lake 

Mead 

11 24 5 (53) 

Lower Colorado 52 60 1 (53) 

Salt 3 39 1 (53) 

Lower Gila 32 31 3 (53) 

Central Nevada Desert 

Basins 

14 11 1 (53) 

Neuse-Pamlico 161 1 1 (76) 

Lake Ontario and Niagara 

Peninsula 

85 1 3 (83) 

Lower Gila 3 2 2 (82) 

Middle Gila 6 2 3 (82) 

Lower Colorado 2 3 9 (78) 

Rio Grande-Elephant 

Butte 

10 7 1 (81) 

Middle Snake 37 22 4 (79) 

Kentucky-Licking 186 0 10 (77) 

Middle Gila 10 38 10 (80) 

Middle Gila 7 46 13 (80) 

Lower Colorado 2 2 9 (78) 
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Table S3: Classification metrics used to assess the ephemeral mapping model. N is number of 

sites, TP is the true positive rate, TN is the true negative rate, FP is the false positive rate, and FN 

is the false negative rate. 650 

Name Definition 

Accuracy 𝑁𝑇𝑃 + 𝑁𝑇𝑁
𝑁𝑇𝑃 + 𝑁𝑇𝑁 + 𝑁𝐹𝑃 + 𝑁𝐹𝑁

 

Sensitivity 𝑁𝑇𝑃
𝑁𝑇𝑃 + 𝑁𝐹𝑁

 

Specificity 𝑁𝑇𝑁
𝑁𝑇𝑁 + 𝑁𝐹𝑃

 

True Skill Score (TSS) Sensitivity + Specificity - 1 
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Table S4: Field assessments of stream ephemerality performed in New England (Summer 2022). 

We followed the ephemeral/intermittent/perennial protocol for the State of North Carolina 

Department of Water Quality (63). Scores < 19 are deemed ‘ephemeral’. 

Name Latitude Longitude Score Classification 

Tucker1 42.95125 -71.07311 5.5 ephemeral 

Tucker2 42.94875 -71.07479 15.0 ephemeral 

Atkins1 42.41396 -72.46797 16.5 ephemeral 

Atkins2 42.42449 -72.48076 8.0 ephemeral 

Harkness1 42.36701 -72.47190 12.5 ephemeral 

 655 
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