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Abstract 

This paper provides stated preference (SP) estimates of the average social cost of carbon 

(ASCC) for use in the evaluation of the benefits and costs of climate policy. We find a U.S. 

average willingness-to-pay (WTP) of $1,116 per year to keep global warming less than 2○C 

by 2100. Combining the WTP estimate with population projections and assessments of the 

required emission reductions, we find a domestic ASCC of $8 per tonne of carbon dioxide. 

Applying a benefits transfer approach to infer WTP in other countries, we obtain an esti-

mate of the global ASCC of $39 per tonne, with a 95-percent confidence interval of $32-

$48. The estimate is insensitive to the discount rate, but it does vary with assumptions about 

the income elasticity of WTP and the rate of change in marginal abatement costs. Reason-

able scenarios create a range of estimates between $12-$118 per tonne. A breakeven anal-

ysis finds that global average benefits of $50, $100, $150, and $200 per tonne correspond 

with U.S. monthly WTP values of $119, $238, $356, and $475, respectively. We also ex-

amine the impact of distributional weighting based on the elasticity of the marginal utility 

of income, providing distributionally-weighted estimates of the global ASCC for use in all 

countries. We argue that a SP estimate of the ASCC is a useful complement to existing 

estimates of the marginal social cost of carbon (SCC) based on different valuation ap-

proaches, and that using our framework translating global benefit measures into corre-

sponding WTP amounts provides a familiar benchmark for interpreting magnitudes.     
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1.  Introduction 

Economic analysis of climate policy often requires an estimate of the benefits of avoided 

greenhouse gas (GHG) emissions. The social cost of carbon (SCC) is the standard metric 

for this purpose. The SCC measures the monetized damages of an additional tonne of car-

bon dioxide (CO2) emissions, or the CO2 equivalent of another GHG, into the atmosphere. 

The avoided damages represent the benefits of emissions reductions, and quantitative esti-

mates of the SCC play a critical role in benefit-cost analysis (BCA). Use of the SCC is 

pervasive not only within the academic literature (Tol 2023), but also among governments 

around the world as an economic justification for climate policy (Aldy et al. 2021; IWG-

SCC 2021; U.S. EPA 2023).  

There are two primary methods for estimating the SCC. First is the use of integrated as-

sessment models (IAMs) that estimate how a marginal change in emissions affects well-

being measured in monetary units. The SCC is the present value of these impacts 

(Nordhaus 2017; Waldhoff et al. 2014; Kikstra et al. 2021; Rennert et al. 2022). While 

IAMs are not without controversy (Pindyck 2013, 2017; Stock and Metcalf 2017), they are 

the most common approach for estimating the SCC (Tol 2023). The second approach is 

based on bottom-up, econometric studies that examine how temperature changes affect 

specific sectors. The results of these studies are sector-specific, partial SCCs, with recent 

applications focusing on mortality (Carlton et al. 2022), labor productivity (Rode et al. 

2022), agriculture (Hultgren et al. 2022), and energy (Rode et al. 2021). 

This paper contributes another approach for estimating the benefits of GHG emissions re-

ductions: a stated preference (SP) estimate of the average SCC (ASCC). SP methods esti-

mate economic values based on direct survey questions, and the approach is commonly 

employed for nonmarket valuation and BCA (Johnston et al. 2017). We argue that a SP 

estimate of the ASCC adds a useful data point to the growing evidence on the economic 

benefits of reducing GHG emissions. Existing methods are highly technical in their use of 

modeling and econometric estimates, and they have a wide range of uncertainty. The ulti-

mate question is nevertheless relatively straightforward: how much should society be will-

ing to pay to reduce emissions? The novel approach of this paper is to simply ask people, 
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employing a standard methodology for nonmarket valuation. Because the approach is 

based directly on public preferences, in contrast to expert analysis, it adds complementary 

estimates with the potential to bolster political support for efficient climate policy. 

There are, however, several challenges for SP estimation and interpretation of an ASCC in 

ways comparable to the familiar SCC. One challenge inherent to the SP method is that 

survey respondents may over-state their willingness to pay (WTP) due to hypothetical bias. 

While good survey design can reduce hypothetical bias (Johnston et al. 2017), all nonmar-

ket valuation techniques have shortcomings. When compared to IAM estimates, for exam-

ple, concerns about hypothetical bias should be traded off against uncertain and less trans-

parent modeling assumptions. Whether hypothetical bias is ultimately a concern is also 

likely to depend on how the estimates compare to those of other approaches. In what fol-

lows, we show that SP estimates of the ASCC are lower than the most recent evidence on 

the SCC.1  

A second challenge arises because the SCC is a marginal rather than average measure. 

Because a one tonne change in emissions is infinitesimally small on a global scale, it is 

difficult to imagine its impacts for purposes of eliciting WTP in a survey question. We 

therefore focus on estimating the average benefit of a non-marginal reduction in emissions. 

In particular, we derive an estimate consistent with the change in emissions necessary to 

meet the internationally agreed upon target of limiting global warming to 2○C above pre-

industrial levels. Previous research has advocated use of the ASCC over the marginal SCC 

because of comparative transparency, consistent long-term policy guidance, and insensi-

tivity to modeling assumptions, especially the discount rate (Pindyck 2017, 2019). In this 

setting, the ASCC is also a lower bound for the SCC assuming marginal damages are in-

creasing in the level of cumulative emissions. 

A third challenge is due to the fact that reducing GHG emissions provides a global public 

good. This means that SP elicitation of the ASCC should reflect the aggregate WTP of the 

 

1 With respect to estimates of the value of a statistical life (VSL), SP estimates are often lower than revealed-

preference estimates based on hedonic wage studies, and both are used as part of a meta-analysis justifying 

the official estimate of the VSL for federal regulatory impact analysis (U.S. EPA 2010).   
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world population. While conducting a globally representative survey is possible, it is diffi-

cult and costly. As an alternative, we survey a representative sample of the U.S. population 

and apply a benefits transfer approach to infer estimates of WTP in other countries based 

on differences in income (Rosenberger and Loomis 2002; Czajkowski et al. 2017; Johnston 

et al. 2021). Our analysis thus provides estimates of the domestic ASCC in the United 

States and for all other countries based on the benefits transfer approach. When combined, 

we estimate the global ASCC, which is comparable to the global SCC typically used for 

official BCAs (Kotchen 2018; Howard and Schwartz 2019; U.S. EPA 2023). 

A fourth challenge is how to accommodate the growing concern about income inequality 

when deriving an estimate of the ASCC. While there is no consensus on how (or even 

whether) to account for distributional concerns in BCA, studies have begun to do so using 

distributional weights when deriving estimates of the SCC (Azar and Sterner 1996; Anthoff 

et al. 2009; Anthoff and Emmerling 2019; Adler et al. 2017; Tol 2019). Germany currently 

uses a weighted SCC, and the U.S. government recently proposed a particular approach to 

distributional weighting of benefits and costs for official regulatory analysis (OMB 2023). 

Consistent with these guidelines, we include a distributionally-weighted analysis that pro-

duces country-specific estimates of the ASCC, showing how the results change with dif-

ferent assumptions about the key parameter of the marginal utility of income.   

There is clear demand for SP estimates of the benefits and costs of changes in GHG emis-

sions. A recent update to the SCC for U.S. federal regulatory analysis (U.S. EPA 2023) 

includes a section on different sources of evidence in support of the estimates, with discus-

sion of limited survey-based estimates. Two of the referenced studies are based on the WTP 

of individuals based on vehicle choice experiments (Achtnicht 2012; Hulshof and Mulder 

2020). However, these results are notably distinct from a global SCC, as they quantify an 

individual's benefit of reducing one tonne of their own emissions, rather than global bene-

fits.2 Pindyck (2017, 2019) conducts a survey to elicit expert opinion on climate change 

 

2  A number of other studies in the literature us SP methods to estimate WTP per tonne to reduce GHG 

emissions, but these are typically estimates for individuals and for a particular policy or choice. Hence they 

do not aim to estimate the global benefits or costs for general policy analysis comparable to the SCC. Alberini 

et al. (2018) provides an example with many helpful references.   



4 

and its economic impacts, but the analysis differs from ours methodologically because his 

estimates are not a SP estimate of individual WTP to mitigate climate change.  

To our knowledge, this paper is the first study that uses SP methods to generate broadly 

applicable estimates comparable to those of the SCC and based on a general population 

survey. Our central estimate is $39 per tonne, with a 95-percent confidence interval of $32-

$48. The estimate is insensitive to the discount rate, but it does vary with assumptions about 

the income elasticity of WTP, and the rate of change in marginal abatement costs. Reason-

able scenarios create a range of estimates between $12-$118 per tonne. 

Another contribution of this paper is a breakeven analysis, based on our conceptual frame-

work, that maps any value of the global ASCC into a corresponding U.S. monthly mean 

WTP. This portion of our analysis does not rely on our survey based WTP and is therefore 

robust to potential skepticism about the reliability of SP estimates. The value of this anal-

ysis is to provide points of reference, based on readily interpretable monthly WTP, as a way 

to interpret the magnitude of the global benefits of changes in emissions. We find for our 

central scenario that global average benefits of $50, $100, $150, and $200 per tonne corre-

spond with U.S. monthly WTP values of $119, $238, $356, and $475, respectively. One 

way to interpret these results is as a “reality check” on estimated global benefits of emis-

sions reductions and observed carbon prices vis-à-vis what may or may not seem like plau-

sible WTP amounts.       

The remainder of the paper proceeds as follows. The next section develops the conceptual 

framework for how to aggregate estimates of WTP to achieve a 2οC warming target into an 

estimate of the ASCC for use in policy analysis. Section 3 describes our survey methods 

and reports basic summary statistics. Section 4 focuses on the analysis of WTP for the U.S. 

population. Section 5 includes the main results on the global ASCC. Section 6 reports the 

results of our breakeven analysis. Section 7 examines sensitivity of the global ASCC to 

distributional weighting based on differences in income across countries. Finally, Section 

7 concludes with a brief summary and comparison of our estimates to others in the litera-

ture. 
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2.  Conceptual Framework 

We develop a conceptual framework to show how aggregate WTP to achieve a 2οC warm-

ing target in 2100 can be used to estimate the ASCC. To begin, assume for simplicity a 

representative individual that will live to the year 2100, with constant real income 𝑤 and 

𝑇 years remaining. Assume further that the individual has complete information, and there 

is no uncertainty. Although there are many paths of emission reductions to achieve the 2οC 

target in 2100, assume initially there is a single path (we will consider multiple paths later). 

For 𝑡 = 0, … , 𝑇, let 𝑚𝑡 denote the business-as-usual (BAU) path of emissions, and 𝑚𝑡
′  the 

path associated with 2οC.  

The object of interest is the economic value the individual places on moving from path 𝑚𝑡 

to 𝑚𝑡
′ . To facilitate implementation in a survey setting, we assume the individual’s valua-

tion is expressed as a constant WTP (in real terms) in each year. The individual’s 𝑊𝑇𝑃 will 

therefore satisfy 

 ∑𝛽𝑡𝑣(𝑤,𝑚𝑡) =∑𝛽𝑡𝑣(𝑤 −𝑊𝑇𝑃,𝑚𝑡
′)

𝑇

𝑡=0

𝑇

𝑡=0

, (1) 

where 𝑣(𝑤,𝑚) is a time-invariant indirect utility function, 𝛽 = 1/(1 + 𝑟) is the discount 

factor, and 𝑟 is the discount rate. It follows that the present value compensating variation 

measure is 

 𝐵 =∑𝛽𝑡𝑊𝑇𝑃.

𝑇

𝑡=0

 (2) 

This represents the present value of a constant stream of income the individual is willing 

to give up to avoid the BAU path of emissions in favor of one with a 2οC temperature 

change  in 2100, while maintaining the same level of utility. Assuming no income effects, 

𝐵 also represents the cost to the individual of taking no action and experiencing the BAU 

temperature change.3  

 

3 An alternative way to see the same result relies on the expenditure function approach (Freeman et al. 2014). 

The present value, compensating variation of moving from the BAU emissions path to the 2○C path can be 

written as  
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To interpret the benefit (cost) on a per tonne basis, it may be tempting to consider the ratio 

𝐵/∑ (𝑚𝑡 −𝑚𝑡
′)𝑇

𝑡=0 , but this neglects to take account of two features (Pindyck 2017, 2019). 

First is that abatement further into the future is less costly in present value. Second is that 

marginal abatement costs can change over time. Capturing both of these effects, we write 

the present value of emissions adjusted on a cost basis as 

 𝐶 =∑𝛽𝑡𝛼𝑡∆𝑚𝑡

𝑇

𝑡=0

, (3) 

where 𝛼 = 1/(1 − 𝑧), 𝑧 is the rate of change in abatement costs, and ∆𝑚𝑡 ≡ 𝑚𝑡 −𝑚𝑡
′  is 

the difference in abatement paths for each year 𝑡. If abatement costs are declining over 

time, then 𝑧 < 0, and the decline in abatement costs operates like an additional discount 

factor. Previous studies (Pindyck 2017, 2019) assume the real cost of abatement is constant 

(i.e., 𝑧 = 0) based on offsetting arguments: costs are likely to decline because of innova-

tion, yet they are likely to increase because of fewer and fewer low-cost opportunities. With 

this assumption, emissions are discounted at the same rate as the individual’s 𝑊𝑇𝑃. Here 

we allow for the possibility that abatement costs increase or decrease over time and exam-

ine the implications of different assumptions.  

The representative individual’s benefit (cost) per tonne is therefore the ratio 𝐵/𝐶, which 

depends on the 𝑊𝑇𝑃, the discount rate, the rate of change in real abatement costs, and the 

path of emission reductions. We now turn from a representative individual to aggregating 

over populations that provide the basis for both a domestic and global ASCC. 

 

𝐵 = 𝑒 (𝑚,∑ 𝛽𝑡𝑣(𝑤,𝑚𝑡)
𝑇

𝑡=0
) − 𝑒 (𝑚′,∑ 𝛽𝑡𝑣(𝑤,𝑚𝑡)

𝑇

𝑡=0
) 

=∑ 𝛽𝑡𝑤
𝑇

𝑡=0
− 𝑒 (𝑚𝑡

′ ,∑ 𝑣(𝑤,𝑚𝑡)
𝑇

𝑡=0
), 

 

where 𝑒(∙)  is the present value expenditure function, and 𝑚  and 𝑚′  denote the corresponding emissions 

paths over all 𝑡 . The expression is the difference between the present value of income given the BAU 

emissions path and the expenditure needed to maintain the same level of indirect utility given the 2○C 

emission path. Then, assuming the measure of WTP is a constant annuity for 𝑇 years, it will satisfy 𝐵 =

∑ 𝛽𝑡𝑊𝑇𝑃.𝑇
𝑡=0  
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2.1.  The Domestic and Global ASCC 

Now assume the individual is from a particular country ℎ, with population 𝑃𝑜𝑝ℎ𝑡 in year 

𝑡. Assume further that the individual’s 𝑊𝑇𝑃 is the population average for country ℎ, and 

therefore denoted 𝑊𝑇𝑃ℎ. The present value aggregate domestic ASCC for country ℎ is then 

 
𝐴𝑆𝐶𝐶ℎ =

𝐵ℎ
𝐶

=
∑ 𝛽𝑡𝑇
𝑡=0 𝑃𝑜𝑝ℎ𝑡𝑊𝑇𝑃ℎ
∑ 𝛽𝑡𝛼𝑡∆𝑚𝑡
𝑇
𝑡=0

, 
(4) 

where the average, within country benefit is scaled by the country population in each year. 

The domestic ASCC reflects the aggregate, average benefits (costs) per tonne in country ℎ 

from meeting (foregoing) the 2οC target.  

To estimate the global ASCC, we need an estimate 𝑊𝑇𝑃ℎ for all ℎ countries that can be 

scaled up by population estimates 𝑃𝑜𝑝ℎ𝑡 for all 𝑡. In effect, the necessary input is equation 

(4) for all ℎ counties. The global estimate (assuming no distributional weighting, which we 

consider later) is then simply a sum across countries: 

 𝐴𝑆𝐶𝐶𝐺 =∑𝐴𝑆𝐶𝐶ℎ.

ℎ

 (5) 

The data and parameters underlying this estimate are country-specific WTPs and popula-

tion trends, the discount rate, the rate of change in real abatement costs, and the global path 

of emission reductions. The distinction between the domestic and global ASCC parallel 

that between the domestic and global SCC. The former is useful for understanding domes-

tic benefits and costs, while the latter apply globally and provide the basis for most benefit-

cost analyses (Kotchen 2018; Howard and Schwartz 2019; US EPA 2023).      

2.2.  A Benefits Transfer Approach 

We now describe how to estimate the global ASCC with more limited data. In our empirical 

application, data are only available on 𝑊𝑇𝑃ℎ for a single country (i.e., the United States). 

We therefore use a benefits transfer approach to estimate 𝑊𝑇𝑃ℎ in other countries based 

on differences in income (Rosenberger and Loomis 2002; Czajkowski et al. 2017; Johnston 

et al. 2021). Let ℎ = 𝑘 denote the country for which we have an estimate of 𝑊𝑇𝑃𝑘. An 

estimate for other countries can then be obtained according to the following adjustment: 
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 𝑊𝑇𝑃ℎ = 𝑊𝑇𝑃𝑘 × (
𝑤ℎ

𝑤𝑘
)
𝜂

, (6) 

where 𝜂 is the income elasticity of WTP. Benchmarks for what to use for this parameter 

include proportional shifts (i.e., 𝜂 = 1) and related estimates in the literature. We consider 

both approaches in our subsequent analysis, using assumptions informed by estimates of 

the income elasticity of the value of a statistical life (VSL) and climate-related WTP esti-

mates. Then, with an estimate of 𝑊𝑇𝑃ℎ for each country, along with population projections 

for all ℎ countries, we follow the preceding steps to arrive at estimates of the 𝐴𝑆𝐶𝐶ℎ for 

each country and of the 𝐴𝑆𝐶𝐶𝐺 for all countries combined. As mentioned, though described 

later in the paper, we also consider distributionally-weighted estimates of the global ASCC 

to examine the implications of taking account of income inequality across countries. 

3.  Survey Questions and Responses 

We collected data through a nationally representative survey of 1,015 U.S. adults over the 

age of 18 between January 20 and 26, 2023. The survey was administered online through 

the Ipsos KnowledgePanel using the Omnibus Methodology.  

Our primary survey question was designed to elicit WTP to reduce global emissions from 

a BAU emissions trajectory consistent with the IPCC’s expected 4οC temperature increase 

by 2100 to a trajectory with only a 2οC increase (Riahi et al. 2022). Respondents were 

informed that meeting the 2οC target would increase the cost of goods and services that 

people buy (Kotchen and Reiling 1994). To add an element of consequentiality (Johnston 

et al. 2017; Caron and Groves 2007; Vossler et al. 2012), the question noted that responses 

will help inform policymakers about climate policy. The valuation question was a referen-

dum format, asking whether respondents would be willing to pay a randomized amount 

more in additional expenses per month to meet the 2οC target. The exact text of the WTP 

question was the following: 

Scientists estimate that global warming pollution is on track to increase 

global average temperatures 4 degrees Celsius (7.2 degrees Fahrenheit) by 

the year 2100. Global warming is already causing higher temperatures, 
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more extreme weather, and rising sea levels. These changes harm property, 

agriculture, human health, and national security. 

Scientists also advise that limiting global warming to a maximum average 

temperature increase of 2 degrees Celsius (3.6 degrees Fahrenheit) is critical 

to avoid far more severe impacts. However, staying below 2-degrees warm-

ing will require changes to the economy that lower pollution, and these will 

increase the cost of goods and services that people buy. 

If achieving the 2-degree goal were to cost you $X per month more than 

you currently spend, would you be willing to pay this additional amount? 

Your answer will help policymakers make important decisions about cli-

mate policy. 

• Yes, I would pay $X more per month to meet the 2-degree target. 

• No, I would not pay $X more per month and understand that global 

temperatures may increase 4 degrees by 2100. 

The randomized dollar amounts, indicated with $X, were chosen to be roughly in line with 

estimates in the literature of previous WTP studies on related topics (e.g., Carlsson et al. 

2012). Seven different levels were chosen and assigned with the probabilities indicated in 

parentheses: $6 (.1), $16 (.1), $26 (.2), $45 (.2), $85 (.2), $124 (.1), $165 (.1). Table 1 

reports the distribution of yes/no responses for each specified amount.  

We asked a follow-up question to identify potential protest responses. Protest responses are 

those for which a “no” response is due to rejection of the survey scenario, rather than re-

flecting a respondent’s WTP less than the randomized dollar amount. It is standard practice 

to exclude protest responses when deriving population estimates of WTP (Johnston et al. 

2017). The exact text of the follow-up question was the following:  

You answered “no” to the previous question about whether you would pay 

$X per month to meet the 2-degree target. Which of the following best de-

scribes the main reason for your “no” response? (Select one) 
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[1] It is more than I would pay. 

[2] I do not think global warming is a problem. 

[3] I do not believe the science that predicts 4 degrees of warming by 

2100. 

[4] I do not think it is possible to keep global warming below 2 degrees. 

[5] Other reason, please explain: ______________________________ 

Response categories [3] and [4] are designated protest responses, along with others from 

the open-ended response category. The protest write-in responses were most commonly 

associated with statements about how it should be the responsibility of others (e.g., corpo-

rations) to address climate change or how the proposed scenario is unrealistic. Importantly, 

respondents that indicate they do not believe in climate change are coded as legitimate “no” 

responses.  In total, we identify 285 protest responses: 89 for response [3], 133 for response 

[4], and the remainder for the write-in responses. Following convention in the literature, 

we exclude these observations from subsequent analysis, along with 37 respondents that 

refused to answer the WTP question, resulting in 693 observations for the complete statis-

tical analysis.4 Table 1 reports the breakdown of the different responses corresponding with 

the specific amount in the valuation question.    

We included an additional question in the survey to ask whether respondents believe cli-

mate change is affecting them personally. The specific survey question was “To what extent 

do you think that global warming is already affecting you personally?” The response cate-

gories were “don’t know,” “not at all,” “only a little,” “a moderate amount,” and “a great 

deal.” We convert responses into a binary variable for whether respondents think global 

warming is affecting them personally using the latter three categories. Table 2 provides 

basic summary statistics for this question, along with those for sociodemographic variables 

 

4 A meta-analysis of protest responses across contingent valuation studies finds an overall mean of 18 percent 

protests responses (Meyerhoff and Liebe 2010). While the percentage is higher here, at 32 percent including 

the non-responses, this may not be surprising given how climate change is such a broad concern and often 

controversial. Nevertheless, the rate here is still well within the range found in other studies. For example, 

Meyerhoff and Liebe (2010) find rates higher than 40 percent across many categories of resources valued 

and question formats. To explore determinants of the protest responses, we include the results of logit models 

in supplementary appendix Table S1. We include a model with all demographic variables and one with only 

those in our the WTP models. We find that respondents are less likely to protest if they believe globally 

warming is already affecting them, their political party affiliation is Democratic, and if they are older.     
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for respondents, all of which are based on previously reported information for the Ipsos 

KnowledgePanel. These include household income, years of education, political party af-

filiation, gender, age, and household size.    

 4.  Willingness to Pay 

We begin with estimation of logit models to examine variables that affect yes/no responses 

to the WTP question. Table 3 reports the results of two models: one with only the specified 

dollar amount as an explanatory variable, and one with sociodemographic variables as well. 

Because we found no statistically significant effects of age, gender, and household size, 

these variables are excluded from the model. The logit results conform with expectation. 

Consistent with economic theory, we find that the probability of a “yes” response is de-

creasing in the specified dollar amount. The result holds when the specified amount is the 

only right-hand side variable and when adding additional covariates. Based on the marginal 

effects evaluated at the mean, we find that a $10 increase in the specified amount decreases 

the probability of a “yes” response by 2 percentage points.  

Turning to the other explanatory variables, we find a large effect of respondent’s thinking 

that global warming is already affecting them, increasing the probability of a “yes” re-

sponse by 28 percentage points. Both household income and education increase the prob-

ably of responding “yes.” Democrats are more likely to respond “yes” compared to inde-

pendents and those with no political party affiliation (which together comprise the omitted 

category), whereas Republicans are less likely. The latter effect is larger, increasing the 

probability of a “no” responses by 15 percentage points.  

Based on the logit model with covariates, we estimate mean WTP using two standard ap-

proaches (Hanemann 1984, 1989). The first is considered conservative because it admits 

the possibility for respondents to have a negative WTP. The second assumes only positive 

WTP, truncating the distribution at zero. These estimates of mean WTP are reported in 
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Figure 1, both as monthly and annual means.5 We also estimate bias-corrected and accel-

erated (BCa) bootstrapped confidence intervals, and these too are reported in Figure 1. 

Allowing the possibility for negative values, we find a mean WTP of $92 per month, with 

a 95-percent confidence interval of $75-$115. This translates to an annual WTP of $1,116, 

with a 95-percent confidence interval of $900-$1,382. Truncating the distribution at zero 

increases the point estimates to $113 per month, or $1,360 per year, yet the confidence 

intervals overlap, indicating statistically insignificant differences.   

To evaluate sensitivity of the results, we also calculate mean WTP using two additional 

methods, the results of which are also shown in Figure 1. One is the spike model (Kristrom 

1997), which requires identifying a subset of respondents who are not in the market, mean-

ing they are indifferent, with zero WTP. For this purpose, we use respondents answering 

“no” to the WTP question and “I do not think global warming is a problem” in the follow-

up question, i.e., response category [2]. The other approach is the non-parametric, Turnbull 

lower-bound estimator (Haab and McConnell 1997). As with the logit model, we estimate 

both models using population weights and confidence intervals using the BCa bootstrap 

method. Although not reported, the spike model generates coefficient estimates similar to 

those for the logit model, whereas the Turnbull model does not estimate relationships with 

other variables. 

Both the spike and Turnbull estimates are below the logit estimates, but all confidence 

intervals are overlapping. Our preferred estimate is the logit specification, where we admit 

the possibility for negative WTP. This is the most familiar approach in the literature, and it 

provides a central estimate. 

The survey question intentionally did not specify an end date on the monthly WTP. The 

reason is to obtain an estimate of the annual mean WTP that can be applied to the popula-

tion year after year until 2100. Then, for a given discount rate, we can derive a mean esti-

mate of 𝐵 in equation (2), which is a key input for estimating both the domestic and global 

 

5 In a supplementary online appendix, we report tables that include the complete set of data underlying all 

figures reported in the main text. These tables include point estimates and confidence intervals.   
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ASCC. In particular, the estimate can then be scaled by population forecasts out to the year 

2100. In what follows, we use the estimate of $1,116 per year (95-percent confidence in-

terval of $900-$1,382), although alternative estimates can be readily substituted into the 

same framework if preferred.      

5.  Average Social Costs of Carbon 

Additional sources of data are necessary to obtain estimates of the ASCC. First is the annual 

change in emissions from a BAU 4οC path to a 2οC path by 2100. We obtain data on the 

necessary change in annual emissions from the wide range of emissions and warming sce-

narios in the IPCC Scenarios Database (IPCC 2022). The IPCC projects warming in 2100 

for 1,202 emissions scenarios. Among these, we identify BAU 4ο pathways as all those 

associated with a predicted temperature increase between 3.8ο and 4.2ο in 2100, and 2ο 

pathways as all those with predicted temperature increases between 1.8ο and 2.2ο. We then 

take pairwise differences between the resulting 33 scenarios for 4οC and 236 scenarios for 

2οC. This procedure yields 33 x 236 = 7,788 emission reduction pathways, and Figure 2a 

illustrates ∆𝑚𝑡 in each year for all pathways out to 2100.  

The second source of additional data is population projections for each country. These we 

obtain from the Shared Socioeconomic Pathways (SSP) corresponding with the different 

emissions scenarios (SSP Database 2023). The country-level population projections are 

reported in five-year age bins that we use to 2100. We linearly interpolate the projections 

to obtain annual projections for each of the five corresponding SSP families associated with 

the emissions scenarios included in either the 4οC or 2οC cases.6 We then link each of our 

7,788 emission reduction pathways to these population projections by taking the average 

of the SSP population projections for the two trajectories differenced in each scenario. Fig-

ure 2b illustrates the different global population scenarios across pairings. It turns out that 

88 percent of the averaged population pathways are simply the SSP2 scenario because it is 

the projection used most frequently for both the BAU and 2οC emissions trajectories. Note 

 

6 To match our survey population, we count only individuals over 18 years old. To obtain 18- and 19-year-

old population estimates, we use two-fifths of the bin reported in the range of 15- to 19-year-olds.  
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that, although Figure 2a illustrates global population projections, we use country-specific 

estimates in our analysis.7 

We focus first on estimates of the U.S. domestic ASCC. Recall from equation (4) that fur-

ther assumptions are necessary about the discount rate and the rate of change in marginal 

abatement costs. Figure 3 illustrates the results across a range of standard discount rates 

(1.5, 2, and 3 percent) and annual changes in marginal abatement costs from ±2 percent. 

The bars reported in the figure reflect the domestic ASCC corresponding with the mean 

emission reduction pathway and mean WTP estimate. We characterize uncertainty in three 

different ways. The first (shown on the right side of each bar in the figure) is based on only 

uncertainty in the estimate of mean WTP, that is, using the 95-percent confidence interval 

of the WTP estimate and the mean emission pathway. The others (shown on the left side of 

each bar in the figure) account for the range of different emissions pathways. The inner 

hash marks reflect the estimates using the extreme emissions pathways and mean WTP. 

The range outside the hashmarks reflects the extreme emissions pathways and the upper 

and lower bounds of the 95-percent confidence internal of the mean WTP.8  

Consider, for example, the central scenario of 𝑟 = .02 and 𝑧 = 0. The estimate is $8, with 

a 95-percent confidence interval of $6-$10, reflecting only uncertainty in the mean WTP. 

This estimate represents the benefit per tonne to present and future U.S. residents over the 

age of 18 assuming the average WTP remains constant to 2100 and population changes 

according to projections. If we also account for uncertainty in the emission reduction sce-

narios (which do not have probability weights), we find a range of $6-$12 assuming the 

mean WTP, and $5-$14 accounting for both scenario and WTP uncertainty.      

The estimates in Figure 3 are insensitive to the discount rate, which is a result noted previ-

ously by Pindyck (2017, 2019) as a desirable feature of considering the average rather than 

marginal SCC. The results vary substantially, however, with different assumptions about 

 

7 This applies for estimates of the domestic ASCC for each country and for the aggregated global ASCC.  

8 Specifically, the lowest (highest) estimate of the range corresponds with the highest (lowest) reduction in 

emissions and the lower (higher) bound of the WTP estimate.     
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the annual rate of change in marginal abatement costs. With marginal abatement costs de-

creasing or increasing 2 percent per year, the central estimate of $8 per tonne increases to 

$17 or decreases to $3, respectively. Recall from equation (4) that decreasing marginal 

abatement costs, for example, decreases the present value of cost-adjusted, future tonnes. 

This has the consequence of increasing the present value of the average benefit (or cost) 

per tonne. As shown in the figure, the confidence intervals also widen in cases with higher 

estimates.    

Next, to arrive at an estimate of the global ASCC, which is our primary focus, we need to 

carry out a benefits transfer to estimate average WTP for countries other than the United 

States. The key source of data is differences in income across counties, and this we measure 

using 2022 gross domestic product (GDP) per capita from the International Monetary 

Fund’s World Economic Outlook Database (IMF 2023). Then according to equation (6), 

we assume an income elasticity of WTP. We consider a range of values (𝜂 = .5, .75,1), 

informed by the literature on the income elasticity of the VSL (Viscusi and Aldy 2003; 

Viscusi and Masterman 2017; Masterman and Viscusi 2018) and limited evidence across 

countries on WTP to avoid climate change (Carlsson et al. 2012).9 

The global ASCC, based on equation (5), generalizes the estimate to represent the benefits 

(or costs) to residents of all countries. Figure 4 illustrates the results assuming initially no 

change in marginal abatement costs (i.e., 𝑧 = 0). We again report uncertainty ranges of the 

estimates corresponding with the same three approaches described for Figure 3. For the 

central case of 𝑟 = .02 and 𝜂 = .75, the estimate of the global ASCC is $39 per tonne, with 

a WTP 95-percent confidence interval of $32-48, and a wider range from $23-$65 reflect-

ing uncertainty over both emissions scenarios and WTP. This reflects the estimated global 

benefit (cost) per tonne of moving from a 4οC to a 2οC temperature increase by 2100. For 

these global estimates, we find that a higher discount rate increases the estimate, though 

 

9 We also estimate an income elasticity of WTP based on our survey sample and the estimated logit model. 

This produces and estimate 0.4. The estimate is nevertheless limited for purposes of the benefits transfer 

because it is based on the relatively high income of the U.S. population, rather than reflecting the range of 

incomes across countries. Empirical evidence underscores that within-country estimates of income elasticity 

of WTP do not reflect cross-country income elasticity of WTP and assuming a reasonable income elasticity 

of WTP is a preferred approach (Czajkowski et al., 2017). 
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the effect is not large. The increase follows because, for some countries, discounting re-

duces the numerator in equation (4) by more than the denominator. More substantial dif-

ferences arise with alternative assumptions about the income elasticity of WTP. Assuming 

an income elasticity of .5 increases the estimate of the global ASCC to $57, whereas as-

suming an income elasticity of one (i.e., WTP proportional to income) decreases the global 

ASCC to $29 per tonne.  

Alternative assumptions about the rate of change in marginal abatement costs substantially 

affect the global ASCC. These results are shown in Figure 5. Continuing with the central 

case (𝑟 = .02 and 𝜂 = .75), the estimate of the global ASCC increases to $81 with an an-

nual 2-percent decline in abatement costs. Reflecting uncertainty, the range of this estimate 

is from $66-$100 for uncertainty in mean WTP and $45-$165 for uncertainty in both mean 

WTP and the emissions scenario. If abatement costs are increasing at 2 percent, the central 

estimate falls to $16 per tonne. These results highlight how the rate of change in marginal 

abatement costs matters far more than the discount rate. While debate about the most ap-

propriate discount rate is ongoing, often drawing on philosophical concerns about inter-

generational ethics (Stern 2007; Nordhaus 2007), assumptions about the rate of change in 

marginal abatement costs seem potentially less contentious, in part because there is a clear 

empirical basis.10  

6. Breakeven Willingness to Pay 

Our empirical analysis thus far has been structured around translating SP estimates of mean 

WTP in the United States for limiting global warming into estimates of the global ASCC. 

However, the conceptual framework we develop enables reversing the direction of analysis 

to begin with a global ASCC and asking what mean WTP is consistent with that value.  

Framing analysis in this way helps to address potential skepticism about the validity of SP 

techniques for estimating WTP. SP estimates generate controversy in the literature, and one 

might expect concerns to be especially present when it comes to valuing the benefits of 

 

10 See Pindyck (2017, 2019) for further discussion about this as a potential advantage of using the average 

SCC compared to the marginal SCC. 
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avoiding climate change, and problem over a long period of time and global in scope. 

Additionally, as with any SP survey, some readers are likely to take issue with one aspect 

or another of our specific WTP question. A breakeven analysis addresses these concerns by 

not leaning entirely on the results of our particular survey, but rather focusing on how a 

seemingly plausible range of WTP estimates map into the global ASCC. 

Another advantage of a breakeven analysis is that focal points have emerged in the 

literature about the benefits (costs) per tonne of changes in GHG emissions. Most common 

are estimates of the SCC at values of $50 per tonne and more recent estimates of $185 and 

$190 (Rennert et al. 2022; U.S. EPA 2030). To be clear, the SCC (a marginal measure) 

differs from the ASCC (an average measure), but the potential applications for policy 

analysis are similar. Pindyck (2017, 2019) makes this case, and his expert elicitation 

produces preferred estimates of the ASCC that range between $80 and $200 per tonne.  

The breakeven analysis that follows provides a framework for mapping views about the 

global benefits into a U.S. mean monthly WTP, so researchers and the public can have a 

familiar reference point to evaluate the potential plausibility of any given estimate of the 

global benefits. Importantly, this portion of our analysis does not rely on our survey based 

estimated WTP; it relies only on the conceptual framework and assumed parameter values, 

for which we show sensitivity analysis.   

Substituting (6) into (5), we can solve for the relationship between the global ASCC and 

U.S. mean WTP: 

 
𝐴𝑆𝐶𝐶𝐺 =

∑ ∑ 𝛽𝑡𝑇
𝑡=0 𝑃𝑜𝑝ℎ𝑡 (

𝑤ℎ

𝑤𝑘
)
𝜂

ℎ

∑ 𝛽𝑡𝛼𝑡∆𝑚𝑡
𝑇
𝑡=0

×𝑊𝑇𝑃𝑘 
(7) 

where 𝑘  denotes the United States. The relationship is linear, and we can see how it 

depends on each of the parameters and underlying data on GDP per capita, the change in 

emissions, and country-specific population projections. 

Figure 6 illustrates the results, where the different panels show sensitivity to the change in 

emissions scenario, the income elasticity of WTP 𝜂, and the rate of change in marginal 

abatement costs 𝑧 . We omit results based on different discount rates because we have 
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already shown relative insensitivity to this parameter. Also shown in the figure are 

reference points corresponding to our estimates of the U.S. mean WTP and the 95 percent 

confidence intervals (see logit results in Figure 1). Each panel illustrates results for a U.S. 

average monthly WTP up to $200. For example, the lower line in the top panel shows that 

a monthly WTP of $200 corresponds with a global ASCC of approximately $60 assuming 

our central estimates of the parameters and the highest present value emission reduction 

scenario.   

We also report in the supplementary appendix (Table S6) the estimated magnitude of the 

slope coefficients underlying all of the lines illustrated in Figure 6. This way readers can 

calculate any mapping between a global ASCC and mean WTP in the United States for a 

preferred scenario. For example, we find for our central scenario (i.e., the middle line in all 

three panels of Figure 6) that the values of the global ASCC of $50, $100, $150, and $200 

correspond with U.S. monthly WTP values of $119, $238, $356, and $475, respectively. 

We believe these points of reference, based on readily interpretable monthly WTP, provide 

a novel way to interpret the magnitude of the global benefits of changes in emissions. The 

framework can also readily accommodate alternative assumptions, and importantly, it 

applies regardless of whether one is skeptical or not about the validity of specific SP 

estimates. 

7.  Distributionally-Weighted Estimates 

There is growing interest in the use of distributionally weighted estimates of benefits and 

costs for BCA in general (OMB 2023; Acland and Greenberg 2023) and for estimates of 

the SCC in particular (Azar and Sterner 1996; Anthoff et al. 2009; Anthoff and Emmerling 

2019; Adler et al. 2017; Tol 2019). The intention is to take account of diminishing marginal 

utility of income when aggregating benefits or costs among groups. The standard approach 

is to apply weights based on the assumption of isoelastic utility, in which case the marginal 
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utility of income is equal to 𝑤−𝜀, where 𝜀 > 0 is the elasticity of the marginal utility of 

income.11  

Indeed, the U.S. Office of Budget and Management (OMB 2023) recommends this ap-

proach in recent revisions to Circular No. A-4, which provides official guidance to federal 

agencies about how to carryout regulatory impact analyses. There are, however, open ques-

tions about how the U.S. government proposes to treat equity weighting with international 

impacts, and the EPA (2023) estimates of the revised SCC are not equity weighted.12 What 

follows should therefore be interpreted as one potential approach to addressing distribu-

tional concerns, while acknowledging that how best to accomplish this objective remains 

subject to debate in the academic literature and for official policy analysis. Nevertheless, 

the approach we employ is standard and currently in use for both BCA and estimates of the 

SCC.  

The distributionally weighted estimate of the global ASCC requires normalizing the esti-

mate to a particular level of income. Accordingly, an important feature to keep in mind is 

that the approach implies a different estimate of the global ASCC for use in each country, 

depending on the country’s level of income. Assuming normalization to the income level 

of country 𝑘, the weight for aggregating estimates of other countries ℎ can be written as   

𝜙ℎ
𝑘 = (

𝑤ℎ

𝑤𝑘
)
−𝜀

. (7) 

Note that the weight is unity for country ℎ = 𝑘 (and any other countries that have the same 

level of income), and greater (less) than unity to the extent that 𝑤ℎ < (>)𝑤𝑘. In effect, 

 

11 The isoelastic utility function takes the form 𝑈(𝑤) = (𝑤1−𝜀 − 1)/(1 − 𝜀) if 𝜀 ≠ 1, and 𝑈(𝑤) = ln⁡(𝑤) if 
𝜀 = 1. 

12 When discussing distributional weighting, the OMB (2023) guidance focuses on domestic benefits and 

costs, and there is relatively little mention of international impacts. The guidance states that altering the 

approach “may be appropriate when analyzing regulations with international scope” (p. 67, footnote 126), 

but it does not discuss options for what alternations might be appropriate other than referencing an earlier 

section of the report on the Scope of Analysis. In that section, the OMB is clear about incorporating 

international climate damages, but it is silent on distributional weighting. Hence, at present, the OMB is clear 

about accounting for international impacts, yet whether distributional weighting should occur and how 

remains unclear, and as noted the EPA did not employ equity weights for it estimates of the SCC. The EPA 

(2023) does, however, discuss the issue and notes that it “will continue to assess the broader literature on 

BCA, social welfare, and equity as it seeks to apply the best available science in its analyses” (p. 167).    



20 

lower income countries are up-weighted while higher income countries are down-weighed. 

And greater values of 𝜀, which reflect greater diminishing marginal utility of income, in-

crease the effect of weighting.  

The distributionally weighted, global ASCC for use in country 𝑘 is then 

 𝐴𝑆𝐶𝐶𝐺
𝑘 =∑𝜙ℎ

𝑘𝐴𝑆𝐶𝐶ℎ
ℎ

. (8) 

This differs from equation (5) not only because of the weights, but also because the global 

estimate now depends on the reference country. Intuitively, the estimate is country-specific 

because the units are consumption-equivalent dollars for the average individual in the ref-

erence country. The country-specific distributionally weighted ASCC is then a measure of 

the per tonne costs (benefits) of changes in emissions in the reference country that can be 

used for BCAs. It is nevertheless important to keep in mind that the estimates represent the 

global benefits (or costs) for the reference country even though the estimate is country-

specific.     

Figure 7 illustrates the results for all countries over a range of values for 𝜀 that are esti-

mated and employed in the literature (Rennert et al. 2022; OMB 2023; Acland and Green-

berg 2023; Gandelman and Hernandez-Murillo 2015; Havranek et al. 2015; Drupp et al. 

2018; Groom and Maddison 2019). Assuming our central case (𝑟 = .02, 𝜂 = .75, and 𝑧 =

0), and the central estimate of 𝜀 = 1.4, the U.S. estimate of the distributionally-weighted, 

global ASCC is $1,191 per tonne.13 This is a substantial increase from the comparable un-

weighted estimate of $39, and this echoes the results of previous studies that find estimates 

highly sensitive to the parameterized marginal utility of income. The implication, in this 

case, is that when taking distributional weighting into account internationally, $1,191 is the 

benefit (cost) per tonne to consider (rather than $39) for potential use in BCAs within the 

United States.14  

 

13 Based on a literature review, 𝜀 = 1.4 is the OMB’s (2023) recommended value for the income elasticity of 

marginal utility.  

14 We report the distributionally weighted ASCCs for all countries in Table S7 of the supplementary online 

appendix.   
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The U.S. estimate changes to $613 and $2,414 for elasticity estimates of 1.2 and 1.6, re-

spectively. These results are also shown in Figure 7 along with those for other countries 

and different these parameter values. While the same pattern applies to all high-income 

countries, distributional weighting causes a decrease in the estimate for relatively low-in-

come countries, and it makes less of a difference for those that are middle-income. At 𝜀 =

1.4, for example, the estimate is $10 for India, $60 for Brazil, and $102 for China. As the 

elasticity converges to zero, the estimate for all countries converges back to the un-

weighted, global ASCC of $39 per tonne.  

8.  Conclusion 

We believe this paper contributes the first SP estimates of the benefits or costs per tonne of 

GHG emissions for general use in policy analysis. Previous research advances the notation 

of using an average (rather than marginal) estimate of the SCC, and it uses expert elicitation 

with detailed questions about the effects of climate change on economic growth and the 

reduction in emissions required to avoid such effects (Pindyck 2017, 2019). This paper 

takes a more direct approach: we use survey methods to ask people much they would be 

willing to pay to reduce emissions in order to meet the internationally agreed upon target 

of limiting emissions to 2○C by 2100. We are then able to interpret these WTP measures 

on a per tonne basis using a range of IPCC estimates on the emission reductions necessary 

to achieve the 2○C target. While our survey focuses on the United States, we are able to 

derive estimates of the global ASCC using a benefits transfer approach. We also show the 

impact of distributional weighting on estimates of the global ASCC.   

One reason researchers may have stayed away from survey-based, nonmarket valuation is 

concern about hypothetical bias. We nevertheless find results substantially lower than most 

SCC estimates in the literature. A recent meta-analysis (Tol 2023) finds that studies con-

ducted within the last decade produce estimates that range between $40 and $525 per tonne 

for high and low discount rate scenarios. A similar range of estimates is found in the de-

tailed analysis included in the EPA (2023) revisions to the SCC. By way of comparison, 

our central estimate here is $39, but we show the effect of alternative assumptions about 
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the income elasticity of WTP and the rate of change in marginal abatement costs. Reason-

able scenarios create a range of estimates between $12-$118 per tonne, and unlike the SCC, 

we find that the results are insensitive to the discount rate. When making comparisons to 

the SCC, however, it is worth emphasizing that we focus on the average SCC, and this 

estimate should be lower than the marginal SCC when the marginal costs of climate dam-

ages are increasing in the cumulative level of emissions and over time. 

The conceptual framework that we develop here should also be of interest even to those 

skeptical of SP techniques for estimating WTP, especially for an issue at the scale of climate 

change. We show how the model enables a transparent mapping between any estimate of 

the average benefits per tonne and the corresponding mean WTP among U.S. residents. 

Based on our central scenario, for example, with find that the values of the global ASCC 

of $50, $100, $150, and $200 correspond with U.S. monthly WTP values of  $119, $238, 

$356, and $475, respectively. We believe that the translation of global average benefits into 

a familiar WTP estimate can provide something akin to a “reality check” on estimated 

global benefits of emissions reductions and observed carbon prices in policy vis-à-vis 

whether they reflect plausible WTP amounts. 

Finally, we argue that no single estimate of climate damages should emerge at the expense 

of others. The scale and complexity of the problem, along with the uncertainty and need 

for assumptions, is simply too great. It is the expanding body of evidence that has value in 

documenting the real and substantial economic damages of climate change—and therefore 

the benefits of mitigation. At present, the real challenge is not whether current policies are 

consistent with optimal climate policy that balances benefits and costs. Instead, substantial 

challenges remain to persuade significant portions of the population and political leaders 

that any meaningful climate policies are worthwhile. Accordingly, the estimates provided 

here will contribute because, alongside the existing literature, they add a new measure of 

economic value based directly on public preferences.   
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Tables and Figures 

 

Table 1: Summary of responses to the WTP question for each specified dollar amount 

Specified 

amount 

Total 

obs. 

 

Yes 

 

No 

Protest 

responses 

Refused 

responses 

$6 101 56 12 26 7 

$16 102 39 20 39 4 

$26 202 95 47 56 4 

$45 203 88 62 47 6 

$85 204 75 70 49 10 

$124 103 30 32 38 3 

$165 100 22 45 30 3 

Total 1015 405 288 285 37 

 

 

 

Table 2: Summary statistics of sociodemographic variables 

 

 

 

 

 

 

 

 

 

 

  

Variable Mean Std. Dev. Min Max 

Experience global warming (proportion) 0.72 0.45 0.00 1.00 

Household income ($1,000s) 95.81 68.16 5.00 250.00 

Education (years) 14.20 2.88 0.00 20.00 

Democrat (proportion) 0.38 0.48 0.00 1.00 

Republican (proportion) 0.24 0.43 0.00 1.00 

Independent (proportion) 0.27 0.44 0.00 1.00 

No party affiliation (proportion) 0.11 0.31 0.00 1.00 

Female (proportion) 0.51 0.50 0.00 1.00 

Age (years) 47.26 18.33 18.00 94.00 

Household size (individuals) 2.76 1.51 1.00 12.00 

Notes: Summary statistics are based on 693 non-protest observations to the WTP 

question. Means and standard deviations are weighted using population weights. 

All variables are based on standard demographics for the Ipsos KnowledgePanel, 

with the exception of having experienced global warming personally.    
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Table 3: Logit models of WTP responses 

 (1) (2) 

Specified amount ($X) −0.010*** 

(0.002) 

[−0.0023] −0.013*** 

(0.002) 

[−.0021] 

Experience global warming   1.744*** [0.282] 

   (0.221)  

Household Income (000’s)   0.005*** 

(0.002) 

[0.008] 

Education (years)   0.094*** 

(0.038) 

[0.016] 

Democrat   0.589*** 

(0.217) 

[0.097] 

Republican   −0.897*** 

(0.240) 

[−0.148] 

Constant 0.968***  −1.849***  

 (0.132)  (0.516)  

     

Observations 693  693  

Log Likelihood -481.921  -366.557  

Akaike Inf. Crit. 967.842  747.113  

Notes: Models are estimated using population weights. Standard errors are reported in pa-

rentheses, and marginal effects (reported in brackets) are evaluated at the variable means. 

All coefficient estimates are statistically significant at the 99-percent level, as indicated by 

three asterisks.    
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Figure 1: Mean WTP and 95 percent confidence intervals for different estimators. The 

different estimates are based on a logit model, a logit model with the cumulative distribu-

tion function truncated at zero, a spike model, and a lower-bound Turnbull estimate. The 

range shows 95 percent bootstrapped confidence intervals. The left and right vertical axes 

are scaled as monthly and annual WTP, respectively. 
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Figure 2: Pathways for the change in emissions and global population for BAU 4οC to 

2οC degrees by 2100. Panel a shows the annual reduction in emissions for 7,788 scenarios 

based on the difference between IPCC pathways with temperature changes 3.8-4.2ο and 

1.8-2.2ο by 2100. Panel b shows all global population trajectories corresponding with the 

emission reduction scenarios. Each is the average of two SSP population trajectories cor-

responding to the pairwise combination of emissions trajectories. The trajectory in bold 

(SSP 2) corresponds to 88 percent of the scenario combinations.   
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Figure 3: Estimates of the U.S. domestic ASCC. The U.S. domestic ASCC is the esti-

mated benefit (cost) per tonne to U.S. residents of moving from a BAU 4οC temperature 

increase by 2100 to a 2οC increase. Values of 𝑧 are different assumptions about the rate of 

change in marginal abatement costs. For each bar, the right-side confidence intervals reflect 

uncertainty in the estimate of mean WTP. The left side reflects the range of estimates across 

the emissions reduction scenarios, where the inner hash marks are evaluated at the mean 

WTP, and the outer extremes are bounds reflecting both emissions and WTP uncertainty. 
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Figure 4: Estimates of the global ASCC with different discount rates and WTP elas-

ticities. The estimates are relatively insensitive to the discount rate, 𝑟, but they vary with 

different assumptions about the elasticity of WTP, 𝜂. All estimates assume a zero rate of 

change in the marginal abatement costs, i.e., 𝑧 = 0. For each bar, the right side confidence 

intervals reflect uncertainty in the estimate of mean WTP. The left side reflects the range 

of estimates across the emissions reduction scenarios, where the inner hash marks are eval-

uated at the mean WTP and the outer extremes are bounds reflecting both emissions and 

WTP uncertainty. 
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Figure 5: Estimates of the global ASCC with different WTP elasticities and assump-

tions about the rate of change in marginal abatement costs. The figure reports results 

for different assumptions about the WTP elasticity, 𝜂, and the rate of change in marginal 

abatement costs, 𝑧.⁡All estimates are based on the central discount rate of 𝑟 = .02. For each 

bar, the right side confidence intervals reflect uncertainty in the estimate of mean WTP. 

The left side reflects the range of estimates across the emissions reduction scenarios, where 

the inner hash marks are evaluated at the mean WTP and the outer extremes are bounds 

reflecting both emissions and WTP uncertainty. 

 

 

  



35 

 
 

 

Figure 6:  Relationship between the global ASCC and U.S. monthly WTP with differ-

ent assumptions about the emissions scenario and parameter values. The top panel 

shows sensitivity to the emissions scenario, the middle panel to the income elasticity of 

WTP 𝜂, and the bottom to the rate of change in marginal abatement costs 𝑧. The vertical 

lines correspond with our SP estimate of mean WTP and the 95 percent confidence interval. 

All scenarios assume the central discount rate of 𝑟 = .02.   

 

 



36 

 
Figure 7: Estimates of the distributionally-weighted global ASCC for each country. 

The country-specific, distributionally-weighted, global ASCC is the benefit (cost) per 

tonne to consider when the change is emissions has costs (benefits) accruing to the specific 

country based on it level of income per capita. Panel a shows results with the elasticity of 

the marginal utility of income 𝜀 = 1.2. Panel b shows results for 𝜀 = 1.4, and Panel c for 

𝜀 = 1.6. 
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Table S1: Logit models of protest response to the WTP question 

 (1) (2) 

Experience global warming  -0.703*** [-0.142] -0.721*** [-0.147] 

 (0.150)  (0.149)  

Household Income (000’s) -0.001 [-0.0002] -0.001 -[0.0002] 

 (0.001)  (0.001)  

Education (years) -0.026 [-0.005] -0.025 [-0.005] 

 (0.029)  (0.029)  

Democrat -0.614*** [-0.125] -0.564*** [-0.115] 

 (0.179)  (0.177)  

Republican 0.019 [0.004] 0.053 [0.011] 

 (0.166)  (0.165)  

Female 0.108 [0.022]   

 (0.142)    

Age 0.009** [0.002]   

 (0.004)    

Household size 0.030 [0.006]   

 (0.052)    

Constant -0.304  0.271  

 (0.498)  (0.382)  

Observations 1,014   1,014  

Log Likelihood -601.5  -604.1  

Akaike Inf. Crit. 1,221  1,220  

Notes: Models are estimated using population weights. Standard errors are reported in pa-

rentheses, and marginal effects (reported in brackets) are evaluated at the variable means. 

One, two, or three asterisks indicate statistical significance at the 90-, 95-, or 99-percent 

levels, respectively 

.    
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Table S2: Data underlying Figure 1, mean monthly and annual WTP for the United States 

Method Monthly WTP Annual WTP 

Logit 92.96 1115.52 

 (75.02, 115.16) (900.24, 1381.92) 

Logit, non-negative distribution 113.31 1359.72 

 (93.38, 148.84) (1120.56, 1786.08) 

Turnbull 82.39 988.68 

 (58.59, 106.20) (703.08, 1274.4) 

Spike 86.76 1041.12 

 (75.21, 116.68) (902.52, 1400.16) 

 

 

 

Table S3: Data underlying Figure 3, U.S. domestic ASC 

  Mean emissions scenario Range across emissions scenarios 

𝑟 𝑧 

Mean 

WTP 

95% Low 

WTP 

95% High 

WTP 

Mean 

WTP 

Mean 

WTP 

95% Low 

WTP 

95% High 

WTP 

0.015 -0.02 16.43 13.29 20.36 10.95 27.19 8.86 33.69 

0.015 -0.01 11.44 9.26 14.18 8.01 17.14 6.48 21.24 

0.015 0 7.63 6.17 9.45 5.58 10.65 4.52 13.19 

0.015 0.01 4.86 3.93 6.03 3.68 6.44 2.98 7.97 

0.015 0.02 2.96 2.4 3.67 2.29 3.74 1.85 4.64 

0.02 -0.02 16.52 13.37 20.47 10.8 28.59 8.74 35.42 

0.02 -0.01 11.73 9.49 14.53 8.07 18.33 6.53 22.71 

0.02 0 7.98 6.45 9.88 5.75 11.37 4.66 14.09 

0.02 0.01 5.19 4.2 6.43 3.9 6.99 3.15 8.67 

0.02 0.02 3.22 2.61 3.99 2.48 4.13 2.01 5.12 

0.03 -0.02 16.82 13.61 20.84 10.57 31.89 8.55 39.52 

0.03 -0.01 12.38 10.02 15.34 8.2 21.14 6.64 26.2 

0.03 0 8.75 7.08 10.85 6.11 13.49 4.94 16.71 

0.03 0.01 5.93 4.79 7.34 4.33 8.33 3.51 10.32 

0.03 0.02 3.83 3.1 4.75 2.92 5.09 2.36 6.31 
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Table S4: Data underlying Figure 4, the global ASCC by discount rate and WTP elasticities 

  Mean emissions scenario Range across emissions scenarios 

𝑟 𝜂 

Mean 

WTP 

95% Low 

WTP 

95% High 

WTP 

Mean 

WTP 

Mean 

WTP 

95% Low 

WTP 

95% High 

WTP 

0.015 0.5 54.29 43.93 67.28 38.81 70.37 31.4 87.2 

0.015 0.75 37.13 30.05 46.02 26.96 48.89 21.81 60.58 

0.015 1 27.78 22.48 34.43 20.45 37.08 16.55 45.95 

0.02 0.5 57.15 46.24 70.82 40.47 76.13 32.75 94.33 

0.02 0.75 39.12 31.65 48.47 28.1 52.85 22.74 65.49 

0.02 1 29.26 23.68 36.26 21.29 40.04 17.22 49.61 

0.03 0.5 63.47 51.36 78.65 44.12 92.37 35.7 114.46 

0.03 0.75 43.5 35.2 53.91 30.6 64.06 24.76 79.38 

0.03 1 32.54 26.33 40.32 23.13 48.42 18.71 60 

 

 

 

Table S5: Data underlying Figure 5, the global ASCC with different WTP elasticities and  

assumptions about the rate of change in marginal abatement costs 

  Mean emissions scenario Range across emissions scenarios 

𝜂 𝑧 

Mean 

WTP 

95% Low 

WTP 

95% High 

WTP 

Mean 

WTP 

Mean 

WTP 

95% Low 

WTP 

95% High 

WTP 

0.5 -0.02 118.34 95.75 146.64 80.93 191.36 65.48 237.12 

0.5 -0.01 84.02 67.98 104.11 58.46 122.68 47.3 152.02 

0.5 0 57.15 46.24 70.82 40.47 76.13 32.75 94.33 

0.5 0.01 37.17 30.07 46.06 26.78 46.85 21.67 58.06 

0.5 0.02 23.1 18.69 28.62 16.8 28.84 13.59 35.73 

0.75 -0.02 81 65.54 100.37 56.18 132.85 45.46 164.62 

0.75 -0.01 57.51 46.53 71.26 40.58 85.17 32.84 105.54 

0.75 0 39.12 31.65 48.47 28.1 52.85 22.74 65.49 

0.75 0.01 25.44 20.58 31.52 18.59 32.5 15.04 40.28 

0.75 0.02 15.81 12.79 19.59 11.66 19.73 9.44 24.45 

1 -0.02 60.59 49.03 75.08 41.47 100.64 33.55 124.7 

1 -0.01 43.02 34.81 53.31 30.74 64.52 24.88 79.95 

1 0 29.26 23.68 36.26 21.29 40.04 17.22 49.61 

1 0.01 19.03 15.4 23.58 14.09 24.62 11.4 30.51 

1 0.02 11.83 9.57 14.65 8.83 14.76 7.15 18.29 
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Table S6: Data underlying Figure 6, relationship between the average GCSS and U.S. monthly 

WTP with different and emissions scenarios and parameter assumptions  

 𝑟  Emissions 𝜂 𝑧 Coefficient 

Top panel 0.02 Low 0.75 0 0.569 

 0.02 Mean 0.75 0 0.421 

 0.02 High 0.75 0 0.302 

Middle panel 0.02 Mean 0.5 0 0.615 

 0.02 Mean 0.75 0 0.421 

 0.02 Mean 1.0 0 0.315 

Bottom Panel 0.02 Mean 0.75 -0.02 0.871 

 0.02 Mean 0.75 -0.01 0.619 

 0.02 Mean 0.75 0 0.421 

 0.02 Mean 0.75 0.01 0.274 

 0.02 Mean 0.75 0.02 0.170 

      

 

 

Table S7: Data underlying Figure 7, estimates of the distributionally-weighted global ASCC for 

each country, along with 2022 GDP per capita 

Country GDP/CAP  𝜀 = 1.2 𝜀 = 1.4 𝜀 = 1.6 

Albania 6369.009 32 38 47 

Algeria 4151.437 19 21 23 

Angola 3790.704 17 18 20 

Argentina 13621.86 79 109 157 

Armenia 5971.816 29 34 42 

Aruba 31990.12 220 360 615 

Australia 66407.6 528 1001 1980 

Austria 52061.65 394 712 1341 

Azerbaijan 6842.028 35 42 52 

Bahamas 32246.24 222 364 623 

Bahrain 28691.77 193 309 517 

Bangladesh 2734.109 11 12 12 

Barbados 20003.71 125 187 290 

Belarus 8567.349 45 57 75 

Belgium 50597.87 381 684 1281 

Belize 6096.324 30 35 43 
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Benin 1366.871 5 4 4 

Bhutan 3562.306 16 17 18 

Bolivia 3631.335 16 17 19 

Bos and Herzeg 6818.396 34 41 52 

Botswana 7347.738 38 46 58 

Brazil 8857.47 47 60 79 

Brunei 42939.4 313 544 985 

Bulgaria 12505.01 71 97 137 

Burkina Faso 824.884 3 2 2 

Burundi 292.619 1 1 0 

Cambodia 3600.223 7 6 6 

Cameroon 1771.384 6 5 5 

Canada 1584.003 438 804 1541 

Cape Verde 56794.02 16 17 19 

Central African Rep 495.936 1 1 1 

Chad 743.373 2 2 2 

Chile 15603.61 93 132 195 

China 12970.33 74 102 145 

Colombia 6644.492 33 40 50 

Comoros 1299.682 5 4 4 

Costa Rica 13089.86 75 103 147 

Croatia 17318.05 105 152 230 

Cyprus 29534.74 200 322 541 

Czech Republic 28094.62 188 300 500 

Dem. Rep. of Congo 660.21 2 2 1 

Denmark 65713.41 521 986 1947 

Djibouti 3665.827 16 17 19 

Dominican Republic 10573.15 58 76 105 

Ecuador 6412.728 32 38 47 

Egypt 4504.369 21 23 27 

El Salvador 4883.047 23 26 30 

Equatorial Guinea 11264.42 63 83 116 

Eritrea 646.957 2 2 1 

Estonia 29343.93 198 319 536 

Ethiopia 1097.584 4 3 3 

Fiji 5341.288 26 29 35 

Finland 50818.38 383 688 1290 

France 42330.45 308 533 963 

Gabon 10281.78 56 73 100 

Gambia 846.171 3 2 2 

Georgia 6769.73 34 41 51 

Germany 48397.8 361 643 1193 

Ghana 2368.814 10 9 10 
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Greece 20875.78 132 198 311 

Grenada 10476.52 58 75 103 

Guatemala 4879.866 23 26 30 

Guinea 1345.568 5 4 4 

Guinea-Bissau 856.62 3 2 2 

Guyana 18744.63 116 170 262 

Haiti 1672.69 6 6 5 

Honduras 2969.35 13 13 14 

Hong Kong SAR 49699.59 373 667 1245 

Hungary 18982.75 117 173 267 

Iceland 73981.34 601 1164 2353 

India 2465.865 10 10 10 

Indonesia 4691.236 22 24 29 

Iran 23033.52 148 227 364 

Iraq 6695.851 34 40 50 

Ireland 102217.4 886 1830 3947 

Israel 55358.84 424 776 1480 

Italy 33739.75 234 388 670 

Ivory Coast 2418.436 10 10 10 

Jamaica 5870.1 29 34 41 

Japan 34357.86 239 398 690 

Jordan 4666.199 22 24 28 

Kazakhstan 11590.63 65 87 121 

Kenya 2255.48 9 9 9 

Kuwait 38123.22 271 460 815 

Kyrgyzstan 1434.873 5 5 4 

Laos 2172.151 9 8 8 

Latvia 21481.52 136 206 325 

Lesotho 1186.744 4 4 3 

Liberia 735.185 2 2 1 

Libya 6025.68 30 35 43 

Lithuania 24031.62 156 241 389 

Luxembourg 127672.5 1157 2499 5634 

Macao SAR 33608.41 233 386 666 

Madagascar 521.578 2 1 1 

Malawi 522.963 2 1 1 

Malaysia 13107.88 75 103 148 

Maldives 15097.15 89 126 185 

Mali 857.976 3 2 2 

Malta 32912.47 227 375 644 

Mauritania 2328.251 9 9 9 

Mauritius 9111.606 49 62 82 

Mexico 10947.98 61 80 111 
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Moldova 5528.591 27 31 37 

Mongolia 4541.572 21 23 27 

Montenegro 9849.566 53 69 93 

Morocco 3896.214 18 19 21 

Mozambique 542.095 2 1 1 

Myanmar 1104.747 4 3 3 

Namibia 4808.922 23 25 30 

Nepal 1292.959 5 4 4 

Netherlands 56297.8 433 794 1520 

New Zealand 47278.49 351 622 1149 

Nicaragua 2375.331 10 9 10 

Niger 561.222 2 1 1 

Nigeria 2326.23 9 9 9 

North Macedonia 6815.772 34 41 52 

Norway 92645.97 787 1595 3373 

Oman 23541.51 152 234 377 

Pakistan 1658.363 6 6 5 

Panama 16172.62 97 139 207 

Papua New Guinea 3427.214 15 16 17 

Paraguay 5615.392 27 32 38 

Peru 7004.793 36 43 54 

Philippines 3597.483 16 17 19 

Poland 19023.23 118 174 268 

Portugal 24910.41 163 254 412 

Puerto Rico 38442.85 274 466 826 

Qatar 82886.79 689 1365 2822 

Republic of Congo 2945.102 13 13 14 

Romania 15618.84 93 132 195 

Russia 14665.25 86 121 177 

Rwanda 912.744 3 2 2 

Saint Lucia 10762.97 59 78 108 

St. Vin & Gren 8546.1 45 57 74 

Samoa 4128.365 19 20 23 

Saudi Arabia 27941.49 187 298 495 

Senegal 1558.144 6 5 5 

Serbia 9164.266 49 63 83 

Sierra Leone 493.572 1 1 1 

Singapore 79426.14 654 1286 2636 

Slovakia 20564.86 129 194 303 

Slovenia 29469.39 199 321 540 

Solomon Islands 2239.622 9 9 9 

Somalia 539.001 2 1 1 

South Africa 6738.926 34 41 51 
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South Korea 327.898 233 385 665 

Spain 29198.09 197 317 532 

Sri Lanka 3292.571 14 15 16 

Sudan 916.033 3 2 2 

Suriname 4879.822 23 26 30 

Sweden 56361.43 434 795 1523 

Switzerland 92434.49 785 1590 3360 

Tajikistan 1014.926 4 3 2 

Tanzania 1245.04 4 4 3 

Thailand 7630.871 39 48 62 

Timor-Leste 1792.71 7 6 6 

Togo 960.833 3 3 2 

Tonga 5008.125 24 27 32 

Trinidad 20746.3 131 196 308 

Tunisia 3815.82 17 18 20 

Turkey 9961.067 54 70 95 

Turkmenistan 11928.8 67 90 127 

Uganda 1105.59 4 3 3 

UK 47317.57 351 623 1151 

United Arab Emirates 47792.94 356 631 1170 

Uruguay 20017.56 125 187 291 

USA 75179.59 613 1191 2414 

Uzbekistan 2243.096 9 9 9 

Vanuatu 3049.75 13 13 14 

Venezuela 3051.738 13 13 14 

Vietnam 4162.938 19 21 24 

Yemen 873.903 3 2 2 

Zambia 1348.36 5 4 4 

Zimbabwe 2420.22 10 10 10 

 


