Racial Disparities in the Health Effects from Air

Pollution: Evidence from Ports

Kenneth Gillingham and Pei Huang*

December 17, 2022

Abstract

This study examines the uneven effects of air pollution from maritime ports on
physical and mental health across racial groups. We exploit quasi-random variation in
vessels in port from weather events far out in the ocean to estimate how port traffic
influences air pollution and human health. We find that one additional vessel in a port
over a year leads to 3.1 hospital visits per thousand Black residents within 25 miles of
the port and only 1.1 per thousand for Whites. We assess a port-related environmental
regulation and show that the policy can help alleviate racial inequalities in health
outcomes.
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1 Introduction

Air pollution is well known to negatively affect human health, most notably by contribut-
ing to respiratory and cardiovascular illnesses. More perniciously, the health effects
are often unevenly distributed across the population, with some groups facing higher
pollution exposures and worse health outcomes (see recent reviews in Mohai et al.,
2009; Banzhaf et al., 2019a,b; Hsiang et al., 2019). There are rising concerns about en-
vironmental justice in the United States due to these disproportionate exposures and
health outcomes. Indeed, a key plank of President Joseph Biden’s campaign platform
involved improving environmental and health outcomes for communities of color (i.e., see
https:/ /joebiden.com/climate-communities-of-color/). Yet, there are many settings with
particular policy relevance where disparities—and solutions to reducing these disparities—
are not fully understood.

This paper examines racial inequity in health outcomes due to air pollution around a
major point source of air pollution: maritime ports.! To explore these inequalities, we also
provide some of the first nationwide evidence of the effect of port activity on air pollution.
Port facilities are especially important to study not only because they produce substantial
pollution but also because they tend to be located in highly populated and low-income
areas. Around 39 million people live within close proximity to ports in the United States
(EPA, 2016), and a high percentage are people of color (Greenberg, 2021). For example,
Long Beach, California, has one of the largest ports in the country and is 70% non-white. In
standard port activities, marine ships, trucks, and cargo-handling equipment burn some of
the most polluting fossil fuels, such as bunker fuel and diesel fuel. Furthermore, the COVID-
19 pandemic-related supply chain challenges have led to massive congestion at many
of the largest ports, with long processions of ships idling just offshore waiting to make berth.

In this study, we estimate the nationwide effects of port activity on air pollution,
contemporaneous effects of port activity-related air pollution on physical and mental
health across races in California, and the effects of a port electrification policy in Cali-
fornia aimed at reducing emissions from ships in port. Our aim is to document racial
disparities in a highly policy-relevant circumstance and examine a potential solution that
could reduce such disparities. One could think of port electrification policy as an exam-
ple where environmental policy could also serve as an equalizing social policy (Reyes, 2007).

The analysis consists of three steps. We first leverage quasi-experimental variation

from distant oceanic events several days prior that exogenously shift the vessel tonnage

'Throughout the rest of the paper, we use the term “ports” to refer to oceanic maritime port facilities. We
do not consider inland river or lake ports.
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or counts in port to quantify the causal impact of port traffic on air pollution nation-
wide. The intuition for our identification strategy is that lagged distant storms far out
in the ocean will change the path of ships and delay arrivals into port but do not other-
wise affect the weather or non-port-related economic activity in areas surrounding the ports.

In the second step, we estimate the causal effect of daily pollution concentrations on
hospital visits in port areas using quasi-random variation from the vessel tonnage in ports
(as predicted by distant oceanic storms several days prior) and local wind conditions. For
this analysis we focus on California because there is policy action underway in this state
to attempt to reduce pollution from ports. Our results indicate that the health impact on
the Black population is three times the impact on the White population (the impact on
Hispanics tends to fall in between). In the third step, we use a regression discontinuity
design and dynamic simulation to analyze the California port electrification policy to show
how regulation can substantially reduce inequality in health outcomes.

We find several compelling results. First, we show that additional tonnage or a vessel
in port increases pollution concentrations for major air pollutants within a 25-mile radius
of the 27 largest ports in the United States. For example, adding one more vessel in
port increases fine particulate matter (PM> 5) concentrations by 0.53 ug/ m3, or about 5%
on average. Second, we show that air pollution is responsible for hospital visits related
to respiratory, heart, and psychiatric problems near ports in California, and the Black
population is disproportionately impacted. We find that one additional average-tonnage
vessel in a port over a year leads to 3.1 hospital visits per thousand Black residents within
25 miles of a major port in California and only 1.1 hospital visits per thousand Whites. We
also provide evidence showing that both exposure to pollution and vulnerability matter.
Our results further show that the port electrification policy in California significantly
reduces pollutant concentrations, disproportionately benefiting the Black population. The
reduced pollution leads to 5.1 avoided hospital visits per thousand Black residents per
year and 2.1 avoided hospital visits per thousand White residents.

Our paper first contributes to the large and growing literature identifying the relation-
ship between air pollution and human health using quasi-experimental methods (e.g.,
Chay and Greenstone, 2003a; Currie and Neidell, 2005; Sanders and Stoecker, 2015; Arceo
et al., 2016; Deryugina et al., 2019).2 In some respects our paper is most conceptually
related to studies that estimate the impact of air pollution on health using transportation

traffic as the source of variation in air pollution. For example, in an important contribution,

2Epidemiological studies have also examined the effect of air pollution on human health. This paper
contributes to the literature by providing quasi-experimental evidence on the effect of short-run exposure to
air pollution on health that addresses several key estimation challenges.



Moretti and Neidell (2011) estimate the effect of air pollution on respiratory-related hospital
visits, using variation in local air pollution from moving vessels in single port: the Port
of Los Angeles. Our paper differs in several fundamental ways. Our focus is on the
relationship between port activity and air pollution nationwide, and more importantly
on racial disparities in health consequences and a specific environmental policy in Cal-
ifornia that might reduce such disparities. Furthermore, our empirical strategy is quite
different in using lagged distant storms far out in the ocean as an exogenous source of
variation. In this sense, our empirical strategy can be seen as more conceptually similar
to how Schlenker and Walker (2016) use congestion in distant airports (possibly caused
by weather) to provide an exogenous source of variation in air pollution around airports.
In addition, our port traffic measure is more comprehensive in including both moving
and docked vessels. Docked vessels are major emitters of air pollution due to diesel-fired
auxiliary electricity generators. We also study many ports, pollutants, and health outcomes.

Our paper also directly contributes to the literature on environmental inequities in
environmental risks. While it is well known that low-income minority populations often
face higher environmental risks, including from air pollution (e.g., Chay and Greenstone,
2003b; Currie and Walker, 2011; Knittel et al., 2016; Alexander and Currie, 2017; Colmer
et al., 2020), our paper is the first to focus on inequality due to air pollution focusing on a
particularly highly policy-relevant setting for environmental justice: port facilities. Some
very recent literature also aims to uncover explanations for racial inequality in environ-
mental risks (e.g., Christensen and Timmins, 2022; Bakkensen and Ma, 2020; Hausman and
Stolper, 2021). We provide insights into the question of whether exposure or vulnerability
underlie our findings of racial inequality and find evidence of both.

Finally, to the best of our knowledge, we provide the first quasi-experimental evidence
that short-term exposure to air pollution influences mental health differently across racial
groups using patient-level hospital records in the United States.® Related work examines
the effects of air pollution on a variety of measures of human physical health, including
the studies mentioned above, but neglecting mental health impacts underestimates the
overall effect of air pollution in a non-negligible way. By including mental health, our work
contributes to the broader literature suggesting that air pollution affects human behavior
and well-being (Graff Zivin and Neidell, 2013), such as diminished labor productivity (e.g.,
Graff Zivin and Neidell, 2012; Hanna and Oliva, 2015; Chang et al., 2016; Borgschulte et al.,
2018; Chang et al., 2019), reduced cognitive performance (e.g., Sanders, 2012; Ebenstein

3In concurrent related work, Ordonez (2020) estimates the effects of air pollutants from fossil-fuel power
plants on mental health in Colombia using a quasi-experimental framework and patient-level records. Zhang
et al. (2017) and Chen et al. (2018) find an effect of air pollution on mental health based on stated evidence
(i.e., survey data) in China.



et al., 2016; Bishop et al., 2018), increased criminal activities (e.g., Burkhardt et al., 2019;
Bondy et al., 2020; Herrnstadt et al., 2021), and inflated road accidents (e.g., Sager, 2019).
Some of these outcomes, such as criminal activities and road accidents, may even come
about partly due to the impact of air pollution on mental health.

The paper proceeds as follows. Section 2 provides a brief background on port pollution
and human health. Section 3 describes our data and descriptive statistics. Section 4
discusses our empirical strategies and identification. Section 5 presents the main empirical

results. Section 6 discusses implications for policy, and Section 7 concludes.

2 Background

2.1 Air Pollution in Ports

Ports serve as a primary conduit for global trade and play a significant role in the local
economies for many coastal cities (EPA, 2017). The Organisation for Economic Co-operation
and Development (OECD) projects that global marine freight will more than quadruple by
2050, and this expansion is expected to increase port activities further. Docked vessels in
ports can be one of the dirtiest emitters in terms of local air pollutants, as they often operate
auxiliary engines to generate onboard electricity by burning bunker fuel and diesel (Wan
et al., 2016). Other diesel-powered activities in ports, such as cargo handling equipment,
automated guided vehicles, and short-haul trucks, also emit a substantial amount of air
pollution (Agrawal et al., 2009). Hence, ports can be one of the largest contributors to air
pollution in surrounding regions.> It is notable that approximately 30% of counties in the
United States that are currently out of compliance or previously failed to meet the National
Ambient Air Quality Standards (NAAQS) either include or are adjacent to major ports (see
Figure B.1).°

Most ports are located in urban areas with high population density (e.g., Los Angeles
and New York), often surrounded by low-income, minority neighborhoods. For example,
around 40% of zip codes within a 25-mile radius of the major ports in California are
designated as “disadvantaged” communities, with concentrations of people that are of
low income, color, high unemployment, and/or low levels of educational attainment.”

4See https:/ /www.itf-oecd.org/sites /default/files /docs /2015-01-27-outlook2015.pdf.

5See https:/ /www.latimes.com/ california/story /2020-01-03 / port-ships-are-becoming-la-worst-
polluters-regulators-plug-in.

®The National Ambient Air Quality Standards are specified under the Clean Air Act in the United States,
which determines maximum allowable concentrations of criteria air pollutants that have been proved to be
harmful to human health.

"Disadvantaged communities in California are often disproportionately impacted by environmental
hazards. They are determined based on Senate Bill 535 (SB 535). The bill requires a proportion of the revenue
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These low-income households and people of color living or working in port areas can be
significantly impacted by air pollution (Houston et al., 2014). Many studies have consistently
documented differences in air pollution exposure across socioeconomic groups, and ports

are likely one contributing factor for these differences.

2.2 Air Pollution and Health

Air pollution is well known to be detrimental to human health (Dockery et al., 1993).
Breathing in polluted air can affect lung development and cause respiratory diseases
(Dockery and Pope 111, 1994), such as asthma and chronic obstructive pulmonary disease
(DeVries et al., 2017; Wang et al., 2019). Epidemiologists have also established an association
between air pollution and cardiovascular disease (Seaton et al., 1995), including impairing
blood vessel function (Riggs et al., 2020), speeding up artery calcification (Keller et al.,
2018), and increasing risk of hemorrhagic stroke (Sun et al., 2019). Moreover, studies have
shown an association between air pollution and breast and lung cancer (Cheng et al., 2020).

As was mentioned above, a growing number of economic studies use quasi-experimental
methods to estimate the causal effects of air pollution exposure on human health. While the
focus of much of the literature has been on physical health, there is growing epidemiological
work showing an association between air pollution and mental health (e.g., Sass et al., 2017;
Kim et al., 2018; Brokamp et al., 2019). Air pollution could adversely affect mental health
through several channels. Air pollution can lead to neuroinflammation and oxidative
stress linked to anxiety, depression, and cognitive dysfunction (Serensen et al., 2003; Salim
et al., 2011). In addition, people tend to reduce outdoor activities due to pollution, which
may induce mental disorders through pathways such as vitamin D deficiency from limited
access to sunlight (Anglin et al., 2013), reduced exercise (Suija et al., 2013), restricted access
to green space (Cohen-Cline et al., 2015), and less social support (George et al., 1989).
Moreover, some studies suggest that worsened physical health caused by air pollution
exposure may also lead to fear and stress, which increases anxiety and other mental
illnesses (Scott et al., 2007).

3 Data and Descriptive Statistics

This paper compiles data from multiple sources on port traffic, air pollution, health, local
weather, and major oceanic storms.

from the Cap-and-Trade program auction to be allocated to projects that benefit disadvantaged communities.
The designation of disadvantaged communities uses the CalEnviroScreen tool, a scoring system with several
factors: pollution burden and socioeconomic characteristics.



3.1 Port Traffic
We obtain port data from the US Army Corps of Engineers (USACE) for 2001-2016. The

data contain dates on which ships enter and exit from ports, including container ships,
bulk carriers, tanker ships, and passenger ships. We match the entrance and clearance
records for each vessel visit based on vessel names or identity numbers, from which we can
approximate the number of days a vessel is at berth in a port.® For each date in a port, we
then calculate gross vessel tonnage and the number of vessels, which serve as the core port
traffic measures for this study. Since different vessel types have different sizes and weights,
the calculated gross vessel tonnage variable represents vessel heterogeneity to some extent.

One minor weakness of these data is that USACE mainly tracks waterborne transporta-
tion originating from or heading to foreign ports and does not have complete coverage
of ships traveling between domestic ports. According to the Bureau of Transportation
Statistics, foreign waterborne freight accounts for 85-90% of total shipping tonnage in
maritime ports in the United States. Hence, the USACE data should be a reasonable
representation of total vessel tonnage in the included ports in this study, even if it misses
a small fraction of the tonnage. This minor caveat about our data is analogous to one in
Schlenker and Walker (2016), where the data set they use for airport traffic only accounts
for major domestic airline passenger travel.

Table A.1 contains the summary statistics of daily vessel tonnage and counts. In our
tinal data set, we focus on the 27 major maritime ports in the United States (based on the

tonnage of goods handled in ports in 2016), six of which are in California.®

3.2 Air Pollution

We obtain daily air pollution concentration data from US Environmental Protection Agency
(EPA) Air Quality System (AQS) for five local air pollutants, carbon monoxide (CO), nitrogen
dioxide (NOy), ozone (O3), PM; 5, and sulfur dioxide (SO,), for 2001-2016. The data contain
daily maxima and means of pollution concentrations at the pollution monitoring site level.™

Due to advancements in remote sensing technology and machine learning models,

researchers are now able to predict granular air pollution concentrations by integrating

8The data contain a small number of unmatched vessel entrance or clearance records (<2%). We treat
these entries as a single day in port since most vessels in the data sample enter and exit from ports on the
same day.

°This estimate is obtained from https://www.bts.gov/content/us-waterborne-freight.

0The six major California ports are the Ports of Long Beach, Los Angeles, Oakland, San Diego, Hueneme,
and San Francisco.

N1The EPA AQS reports various daily means with different time windows that air passes through the
monitoring device before it is analyzed. For example, for CO at certain monitoring sites, there are one-hour
and eight-hour run daily averages. We take averages for each monitor and day.

7


https://www.bts.gov/content/us-waterborne-freight

satellite imagery, chemical transport models, pollution monitor data, land cover, and
meteorological data. For robustness checks, we obtain daily zip code-level satellite-based
PM; 5 projection data from Reid et al. (2021). We use the generalized linear model projection,

which combines results from two other projections.

3.3 Health

We obtain patient-level administrative data from the California Office of Statewide Health
Planning and Development for 2010-2016. These include three types of data: Patient
Discharge Data (PDD), Emergency Department Data (EDD), and Ambulatory Surgery
Center Data (ASCD). The PDD consists of overnight stays from all California hospitals.
The EDD and ASCD keep track of patients who had single-day emergency treatment
in an Emergency Room or licensed freestanding Ambulatory Surgery Centers. Any pa-
tient initially logged in the EDD/ASCD that is subsequently admitted to a hospital for
overnight stays is dropped in the EDD/ASCD and then added to the PDD to eliminate
double-counting and ensure consistency.

These three data sets provide dates for hospital visits, the zip codes of home addresses,
demographics (age, sex, and race), one principal diagnosis, and up to 24 secondary
diagnoses. In our primary specification, we pool the three data sets and count the daily
number of hospital visits at each zip code for patients who had either a principal or
secondary diagnosis related to the health problems examined in this paper.’? We then
merge in population data from the 2010 US Census.® We next calculate the daily hospital
visit rate at the zip code level, indicating the number of hospital visits per million residents
per day. We focus on hospital visits of six categories of illnesses: respiratory (asthma, acute
upper respiratory, all respiratory), mental (anxiety, all psychiatric), and heart-related. We
also include two diseases for placebo checks: arterial embolism (i.e., stuck blood clots) and
appendicitis.’* Figure B.2 illustrates that our sample includes large sections of the largest

urban areas in California.

2We conduct robustness checks exploring only principal diagnoses and each of the data sets separately.

1BUS Census data is based on the zip code tabulation area (ZCTA), so we merge in based on the ZCTA.
We exclude the ZCTAs with fewer than 5,000 residents (or those with fewer than 1,000 residents in each
socioeconomic group for heterogeneity analysis), which only accounts for <3% of the population around
ports. For the remainder of the paper, we refer to ‘zip codes’ for simplicity.

“The administrative data sets adopt what are called ‘ICD codes’ to record diagnoses. In October 2015, the
codes were upgraded from ICD-9-CM codes to the ICD-10-CM codes. Table A.2 presents the ICD codes for
this study. The codes that fall into the psychiatric categories follow Brokamp et al. (2019) by excluding those
associated with suicides. The table also presents the corresponding Medicare Severity Diagnosis Related
Group (MS-DRG) codes for calculating the medical costs of illnesses from the Medicare data.



3.4 Weather

We acquire weather data from the National Oceanic and Atmospheric Administration
(NOAA) Integrated Surface Database for 2001-2016. We construct daily measures of
weather variables from hourly readings at the weather station level. These variables include
dew point, minimum and maximum temperatures, precipitation, wind speed, and wind
direction. The minimum and maximum temperatures are the lowest and highest hourly
readings in a day, and the daily precipitation is the summation of hourly records.’> We
then calculate daily means for dew point temperature, wind speed, and wind direction.
The wind direction blowing north is normalized to zero, and it increases up to 360 degrees

clockwise.

3.5 Tropical Cyclones

Tropical cyclones are rapidly rotating storms that originate in the tropical oceans. Those
occurring in the northeastern Pacific Ocean or the Atlantic Ocean are called hurricanes,
while those in the northwestern Pacific Ocean are called typhoons. We obtained data on
the 578 tropical cyclones near the United States from 2001-2016 from the NOAA National
Hurricane Center. The data track dates, times, center locations, maximum wind, central
pressure, and wind radii of historical cyclones every six hours in the Northeast and
North-central Pacific Ocean and the Atlantic Ocean.

Figure 1(a) shows all hurricanes that occurred in 2016 and the locations of the 27
major ports in the United States. The figure shows that cyclones can strike ports, which
may directly impact local weather and air pollution. Our primary results only use data
when cyclones are at least 500 miles away from the 27 major ports. We chose 500 miles
because cyclones are documented to have a typical radius in the range of 125-310 miles,
so we can be assured that the ports are well outside the scope of the cyclones included
in our study.'® We run several robustness checks on this exact definition. The path of cy-
clones atleast 500 miles away from ports can be seen in the colored dotted lines in Figure 1(a).

Tropical cyclones are especially useful for our study because they can dramatically
affect the number of ships and gross tonnage in port. For example, StormGeo—a global
weather service provider—observes that “[t]ropical cyclones [raging in the ocean] have an
enormous impact on ships and shipping logistics. Entire supply chains can be disrupted

when ships are delayed due to the presence of a cyclone.”?” To illustrate this effect, Figure

15We use the most recent available reading for any missing hourly precipitation readings.

16See https:/ /public.wmo.int/en/our-mandate/focus-areas/natural-hazards-and-disaster-risk-
reduction/tropical-cyclones.

7See https:/ /www.stormgeo.com/products/s-suite/s-routing/articles/ the-effects-of-tropical-cyclones-
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1(b) shows how two paths of ships headed for US ports were taken off track by Hurricane
Leslie from August 30 to September 12, 2012. Typically, vessels would take the efficient
routes following the shortest distances (the dashed lines) to travel between ports. In this
case, we have ships traveling from the Port of Marseille, France, to the Port of Houston and
the Port of Santos, Brazil, to the Port of New York and New Jersey. Around September 8,
2012, the vessels took longer alternative routes (the solid lines) to avoid Hurricane Leslie,
which led to additional transit time and delays in reaching their final destinations. This
influence of distant storms on shipping paths will provide an exogenous source of variation

in our study, as will be discussed.

3.6 Data Compilation

We compile two data sets for this study. For the analysis of air pollution, we construct the
data at the paired monitor-port level with the following steps: (1) we map all pollution
monitors within a 25-mile radius of the 27 major ports;'® (2) we calculate the Vincenty
distance and direction between a monitor and its mapped port based on their latitudes
and longitudes;! (3) we select all weather stations within a 50-mile radius of pollution
monitors and calculate inverse distance-weighted averages of weather measures at the
monitor level; and (4) we calculate the relative wind direction between a monitor and a
port to determine whether a monitor is downwind or upwind of its paired port, i.e., the
difference in angles between the wind direction observed at a monitor and a perpendicular
ray from the port to the monitor.

For our analysis of health impacts, we construct the data at the paired zip code-port level
with similar steps: (1) we select all zip codes within a 25-mile radius of the six major ports
in California; (2) we calculate the Vincenty distance between a paired zip code and port; (3)
we calculate the zip code-level pollution measures by taking inverse distance-weighted
averages of the monitor-level data within 25 miles of zip code centroids; (4) we calculate
zip code-level weather measures by selecting all weather stations within 50 miles of zip
code centroids and take inverse distance-weighted averages.

Table 1 contains the summary statistics for the main variables in this study, with hospital
visit rates broken down by race. Tables A.3-A.7 present the supplementary summary

on-shipping/.

8]n our data set, a monitor can be mapped to multiple ports, since ports can be close to each other (e.g.,
Ports of Los Angeles and Long Beach).

YVincenty distance is a commonly used distance measure between two points on the surface of a spheroid
developed by Thaddeus Vincenty (for examples of economics papers adopting this distance measure, see
Auffhammer and Kellogg (2011) and Currie et al. (2017)). The distance measure assumes that the shape of
the Earth is an oblate spheroid, which is more accurate than other distance measures, such as great-circle
distance, which assume a spherical Earth.
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statistics of pollution and hospital visit rates for various slices of the data.

3.7 Descriptive Statistics on Racial Disparities

Before diving into the empirical modeling, we present descriptive statistics on racial dis-
parities in pollution exposure and hospital visits near ports in California. Following Currie
et al. (2020), we primarily focus on comparing non-Hispanic White and Black populations.
The Hispanic ethnic identity is often described as more fluid over time than non-Hispanic
White or Black groups, which may introduce measurement errors in comparing Hispanics
and non-Hispanics (Liebler et al., 2017). However, for the interested reader, we also present
some descriptive statistics for Hispanics in Figure B.3.

Figure 2(a) shows distributions of the Black and White populations residing in California
port areas by distance to their nearest mapped ports. We observe that the Black population
tends to live closer to ports, while the White population is more uniformly distributed,
suggesting that ports may disproportionately impact Blacks simply due to differences in
exposure to air pollution.

Figure 2(b) presents distributions of populations for the two racial groups by percentile
of mean PM 5 exposure at the zip code level over 2010-2016. We see that Blacks live in
areas that are exposed to higher pollution concentrations than Whites. As further evidence,
Table A.8 presents the average pollution exposure for Blacks and Whites in port areas,
weighted by the population of each race at the zip code level.?’ The evidence indicates that
Blacks face substantially higher exposure to air pollution in areas around ports than Whites.

Next, we examine the racial gaps in health outcomes. Figure 2(c) plots probability
density functions of annual hospital visit rates for the Black and White populations for
zip codes within 0-12.5 miles to ports and zip codes within 12.5-25 miles to ports. For
both distance ranges, the distributions for the Black population lie to the right of the
distributions for Whites. The gaps in mean hospital visit rates between Blacks and Whites
become slightly wider closer to ports. Further, Figure B.6 shows that annual air pollution
exposure for individuals visiting hospitals is notably higher for Blacks than Whites. These
tigures provide descriptive evidence of racial disparities in pollution exposure and health

outcomes in port areas.

2This analysis focuses on differences in exposure across zip codes and ignores any within-zip code
differences in exposure, so it may slightly underestimate disparities in pollution exposure. That said, this
approach is standard in the literature (see a review of this approach in Banzhaf et al. (2019b)). Figures B.4 and
B.5 further illustrate the locations of PM, 5 monitors and ports, computed average pollution concentrations,
and race-specific population shares at the zip code level surrounding two major urban areas in California.
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4 Empirical Strategy

4.1 Effect of Vessels in Ports on Air Pollution

We begin our analysis by estimating the effect of port traffic on daily air pollution

concentrations nationwide. Our empirical specification is as follows:
Pz’pt = ﬁvpt + Xit0 + 0 + Hip + €ipt, (1)

where Pjy,; refers to local air pollutant concentrations at monitor i that is mapped to port p
on day t. The variable V) is either the gross vessel tonnage or the number of vessels in
port. The set of variables X;; includes weather controls consisting of maximum, minimum,
and dew point temperatures; precipitation; wind speed; and relative wind direction (indi-
cating whether a monitor is downwind or upwind of the mapped port). X;; also includes
quadratic terms for each of the weather controls (except for the relative wind direction). We
incorporate temporal fixed effects 6; that consist of county-by-year, month, day-of-week,
and holiday fixed effects.?! Since there may be unobserved time-invariant effects, we further
include monitor-port fixed effects u;y. e;p; is the error term. The parameter of interest, 8, can
be interpreted as the effect of port traffic on local air pollutant concentrations for a given day:.

There are several potential concerns in estimating equation (1) using ordinary least
squares (OLS) that may lead to biased estimates of 5. One concern is that there may be some
measurement error in the port traffic measures because we observe vessels originating
from or heading to foreign ports (85-90% of tonnage), so we miss some vessels in our
analysis. A second concern is the possibility of omitted variables, such as unobserved
economic or weather factors that affect port traffic and local air pollution.

To address these concerns, our empirical approach leverages quasi-random variation
from distant tropical cyclones several days prior to the day under consideration. Specifically,
we instrument for V); using the existence of lagged tropical cyclones far out in the ocean.
As mentioned above, these cyclones often disrupt travel for marine vessels, delaying their
arrival into ports, leading to fewer ships and less tonnage in ports several days later (recall
Figure 1). The first stage relies on this disruptive impact on shipping.

To be precise, the first stage of our instrumental variables approach is:

2The holidays include New Year, Martin Luther King Jr. Day, Presidents Day, Memorial Day, Independence
Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving, and Christmas, as well as the three-day prior
and post the holiday.
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where TC;_, is an indicator variable equal to one if there are one or more tropical cyclones
far out in the ocean (i.e., at least 500 miles away from ports) on day t — m. We use a
seven-day lag (m = 7) in our primary specification, but we run robustness checks with
different lags. A cyclone can last anywhere from a few days to weeks. Thus, to create this
lagged variable, we first identify the days when there are one or more cyclones that are
at least 500 miles away from ports, and then take the seven-day lag.?> The variable W;y,;
includes the exogenous variables defined in equation (1): weather controls, temporal fixed
effects, and monitor-port fixed effects.

To be a valid instrument, TC;_,, must satisfy the exclusion restriction, i.e., it is uncorre-
lated with the error term e;,; in equation (1).% A direct threat to the exclusion restriction
would be if the tropical cyclones hit the ports several days later, directly affecting pollution.
We avoid this concern by removing the observations for the days when cyclones appear
within a 200-mile radius of ports. We also remove observations two days prior and after
the cyclones are within a 200-mile radius, so we only using days when the cyclones are
still quite far away from the ports, ameliorating any concerns about changes in economic
activity due to the storm affecting our results. Further, we perform a robustness check
removing all observations within 21 days after a cyclone is last within 200 miles of ports in
case it takes ports weeks to recover after a storm.

Another concern could be that lagged distant cyclones not only impact vessel tonnage
or counts in ports but also substantially influence the composition of vessels, which may;,
in turn, affect air pollution in ports. Figure B.7 shows that lagged tropical cyclones far out
in the ocean do not appear to have any notable effect on the composition of vessel types in
ports. In addition, when a storm is slated to arrive at a port, vessels tend to depart earlier to
avoid or weather the storm at sea and avoid potential collisions, so later departures should
not be a threat to identification.

A more modest threat could be if lagged tropical cyclones far out in the ocean sufficiently
impact meteorological patterns that they indirectly affect current-day weather in the ports.
We explore this by dividing the sample into month-days when TC;_7 = 1 and those
when it is zero. Figure 3 shows distributions of the six weather variables across the two
subsamples.?* The distributions between the two grouped samples are almost identical,
confirming that the weather in the ports is no different when there are tropical cyclones in

2The choice of seven days is motivated both because it is a week after the storm was out at sea and because
we observe a drop in vessel tonnage in ports seven days later.

BWe expect lagged distant tropical cyclones always to reduce the number of vessels and gross tonnage in
ports, so the monotonicity condition should hold.

%Because the number of observations in the two subsamples is different, we randomly draw a subset of
observations in the second subsample, so the number of observations is the same between the samples, but
statistical tests of differences in means are no different if we use the each of the full subsamples.
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the distant ocean seven days prior than when there are not.?

Thus, for there to be remaining identification concerns, there would have to be some
other localized source of air pollution that happens to be correlated with distant storms
seven days earlier. This seems unlikely to us. But we will also perform a placebo test and a

set of robustness checks to further support the instrument’s validity.

4.2 Effect of Air Pollution on Health

To estimate the relationship between air pollution and health outcomes in port areas in
California, we specify the following linear regression model for the overall population and

separately for Blacks and Whites:
Yipt = BPipt + XitO + Ot + Uip + eipt, 3)

where vy, is the hospital visit rate (i.e., hospital visits per million residents) associated
with an illness in zip code i that is mapped to port p on day t. The variable P;;; is the air
pollutant concentration. We run the regression separately for each of four pollutants—CO,
NO,, PM, 5, and SO,—that are shown to be detrimental to human health.2 Because these
pollutants have different scales, we standardize them by their sample means and standard
deviations to facilitate comparisons. In an extension in Section 5.4, we also consider
including sets of these pollutants that might be co-emitted. The remaining variables
are similar to those specified in equation (1), where Xj; is a set of weather controls (not
including wind variables). 6; is the set of temporal fixed effects. y;, denotes zip code-port
fixed effects, which are especially useful for controlling for time-invariant factors that
affect health and pollution levels (e.g., poor households with lower baseline health have
previously sorted into in polluted areas). The coefficient of interest § indicates the effect of
a one-unit increase in air pollution concentrations on the daily hospital visit rate associated
with an illness.

However, estimating equation (3) using OLS may still lead to a biased estimate of f. One
potential concern is that exposure to air pollution is not randomly assigned to residents,
and thus people with preferences for better air quality may adjust their daily activities
based on pollution forecasts. Another potential concern is that there may be measurement
errors in pollution exposure. Our pollution measures at the zip code level may deviate

from residents” actual exposure since we do not observe their exact home addresses, and

5To provide further evidence, Table A.9 presents the standardized mean differences, variance ratio, and
Kolmogorov-Smirnov statistics for the weather variables.

2%]n this choice of pollutants to study, we follow the existing evidence of the health effects of common air
pollutants (e.g., Dominici et al., 2006; Bell et al., 2008; Brokamp et al., 2019).
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people are also unlikely to be stationary all the time. In addition, there may be time-varying
omitted variables correlated with both air pollution and health.

To address these concerns, we employ an over-identified instrumental variables ap-
proach (Knittel et al., 2016; Schlenker and Walker, 2016; Deryugina et al., 2019), where the
first-stage regression is specified as:

7 7
Pipt =0(1th + ar WS + Z OégsWDlS-t + 0(4th X WS + Z a5szt X WD?t+
s=1 s=1

7 7 )
Z aesWSiy x WD5, + Z a7S‘7pt XWSit x WD3, + Wip A + €ipt.
s=1 s=1
In this equation, WS;; represents wind speed. WD3, is an indicator variable for wind
direction, which is equal to one if the daily mean wind direction in zip code i falls in each
45-degree interval [45s, 45s+45), where s € {1, ..., 7} is the interval.”” W;,; includes the
same weather controls (except for wind direction and wind speed) and fixed effects as
in equation (2). The variable th is the fitted vessel tonnage in port p on day ¢, which is

obtained using the following regression:

th = Z )/p]lp XTCipy + épt/ 5)
p

where TC;_y, is the tropical cyclone indicator variable. The variable 1, is an indicator for
port p, which allows the effect of the instrument to vary across locations.

The intuition for the identification in this empirical strategy is that we are isolating and
leveraging the variation in vessel tonnage that comes about because of distant tropical
cyclones several days prior.® This approach avoids using any variation in vessel ton-
nage related to factors that may also influence hospital visit rates. For example, people
may observe or possess information about port traffic and adjust their activities and
pollution exposure accordingly. For there to be a remaining identification concern, one
must believe the unlikely scenario that tropical cyclones in the distant ocean several days
prior influence hospital visits in areas around ports through a channel outside of port traffic.

Our specification also includes local wind direction and wind speed in the set of

We exclude the interval [0, 45) in regressions as the base, and no observations fall in the interval [315,
360) in our data set, so this interval is also excluded.

2Wooldridge (2002, p. 117) discusses the assumptions for using fitted variables as instruments, which
requires the exogenous regressors for generating fitted instruments to be orthogonal with the error term in
the main estimation equation, i.e., equation (3). See Dahl and Lochner (2012) and Schlenker and Walker
(2016) for recent papers using fitted variables as instruments.
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instruments, which adds statistical power because local wind affects the spatial distribution
of air pollutants. A large body of meteorological literature has shown that wind direction
and speed are strong predictors of local pollutant concentrations (e.g., Chaloulakou et al.,
2003; Kukkonen et al., 2005; Karner et al., 2010). Based on this scientific evidence, a growing
number of studies in the economics literature exploit variation in local wind as the driver
for air pollution (e.g., Moeltner et al., 2013; Schlenker and Walker, 2016; Keiser et al., 2018;
Deryugina et al., 2019; Bondy et al., 2020; Anderson, 2020; Herrnstadt et al., 2021).

5 Results

5.1 Effect of Vessels in Port on Air Pollution

We begin our analysis by demonstrating a causal relationship between port traffic and
air pollution. We estimate the model given in equation (1) using two-stage least squares,
with the existence of distant tropical cyclones seven days prior as the instrument. We
perform this estimation using all 27 major ports in the United States. The standard errors
are two-way clustered by monitor-port and day.

In the first stage, we estimate equation (2). We find a strong first-stage relationship,
consistent with lagged distant tropical cyclones affecting vessel tonnage and the number
of vessels. The first-stage F-statistics reported in Panel A of Table 2 range from 13 to
35.2 These are well above standard thresholds for weak instruments to be a concern
(e.g., Andrews et al. (2019) suggest that instruments are weak below a threshold of ten).
The point estimates shown in Table A.10 are all significant, indicating that the existence
of lagged distant tropical cyclones results in 20,000 metric ton (Mt) less tonnage (or 0.5
tewer vessels) in ports per day.®*® We also present two tests for weak instruments, the
Anderson-Rubin Wald statistic and the related Stock and Wright (2000) LM S statistic. The
null hypothesis of the two tests is that the coefficient of the endogenous variable is equal to
zero in the structural equation (i.e., we have a weak instrument). The p-values for these
two tests indicate that the null hypothesis is rejected at the 1% or 5% levels for most columns.

Estimating the second stage shows the effect of port traffic on the concentration of
the four major air pollutants, which are shown in Panel A of Table 2. Each entry is a
separate estimation. Columns (1)—(4) show the results using vessel tonnage as the covariate

of interest, while columns (5)—(8) shows the results using the number of vessels as the

Al first-stage F statistics reported in this paper are cluster-robust Kleibergen-Paap Wald F statistics
(Kleibergen and Paap, 2006), which are much smaller than the standard Cragg-Donald Wald F statistics
assuming i.i.d. errors (not reported in the paper) (Cragg and Donald, 1993).

30The specifications are the same across the columns. The number of observations differs across columns
due to the minor differences in data availability for each pollutant.
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covariate of interest. Using vessel tonnage accounts for the fact that larger ships with
greater capacity are more likely to have greater emissions. In contrast, using the number of
vessels allows for a straightforward interpretation by quantifying the effect of an average
ship. Hence, we show both. All results include county-by-year, day-of-week, holiday, and
monitor-port fixed effects.

The results in Table 2 show a significant effect of both vessel tonnage and the number
of vessels on pollution concentrations for CO, NO,, PM; 5, and SO; in the US port areas.®
Looking across the columns (1)—(4), we find that a 100,000 Mt increase in vessel tonnage in
a port in a day results in an increase of 23.19 ppb for CO (4.6%), 1.17 ppb for NO, (8.6%),
and 1.2 ug/m3 for PM, 5 (11.3%) within a 25-mile radius of the port. The results in columns
(5)—(8) can help to contextualize the results better and indicate that one additional vessel in
a port in a day results in a 10.65 ppb increase in CO (2.1%), a 0.54 ppb increase in NO,
(4%), and a 0.53 ug/ m? increase in PM; 5 (about 5%). The estimates associated with SO,
are not significant, largely due to the international policy restricting marine fuel sulfur
content that started in 2005. When using a subsample of earlier years, the estimate for SO,
becomes significant, as shown in Table A.12.

We also estimate the model given in equation (1) using OLS, as shown in Panel B of
Table 2. The OLS coefficients are smaller and not all are significant. These differences may
be the result of bias due to measurement error or other confounding factors (see Schlenker
and Walker (2016), Deschénes et al. (2017), and Deryugina et al. (2019) for similarly large
differences between OLS and IV).

In contrast to the pollutants in Table 2, O3 is a secondary pollutant, which is formed
through complex chemical reactions with NOy and volatile organic compounds (VOCs)
in the presence of warm temperatures and sunlight.®? Yet O3 is well-known to negatively
affect human health (Aufthammer and Kellogg, 2011). We thus conduct the same analysis
for O3 in Table A.13 to more deeply understand how port traffic influences important air
pollutants. The estimates are negative but insignificant. This may be driven by increases in
NOx from port traffic (shown in Table 2), which can also interact with existing Oz in the air
and in some cases actually reduce the total O3 concentrations (Sillman, 1999; Seinfeld and
Pandis, 2016; He et al., 2020).3® In the remainder of the paper, we focus on the four criteria

$1Table A.11 presents the corresponding results using the subset of California ports, since we restrict our
analysis of health effects of pollution to the California port areas due to data availability.

2NOx is a generic term for chemical compounds of oxygen and nitrogen (i.e., mainly NO and NO5) that
are related to the formation of smog, acid rain, and ozone. Similarly, SOy are chemical compounds of oxygen
and sulfur, such as SO,.

3This finding is different from Moretti and Neidell (2011), where port traffic results in an increase in
O3 concentrations in the port areas of Los Angeles. This discrepancy may be due to different studied
locations. Auffhammer and Kellogg (2011) show that southern California, including Los Angeles, tends to be
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air pollutants (CO, NO,, PM; 5, and SO,), noting that they can all affect human health via
channels separate from Og.

The increase in pollution from added port traffic can be interpreted as the combined
effect from the direct emissions from the additional vessels in port and the indirect
emissions due to the complementary activities associated with handling goods from the
ship. For example, cargo handling equipment and short-haul trucks are often powered
with diesel fuel and can be expected to add to the emissions from the ship itself. While there
are no other estimates exactly like ours in the literature, the US Environmental Protection
Agency estimates that emissions associated with marine traffic account for 7-61% of NOx
and SOy in certain port areas (EPA, 2003). In a rough calculation, our estimates suggest
that marine shipping in the 27 major ports in the United States contributes 36% of NO;
within a 25-mile radius (see Appendix C.1).

5.2 Racial Disparities in the Effects of Air Pollution on Health

We now turn to the effects of air pollution in port areas in California on health outcomes—
and how they differ by race. This sets the stage for our analysis of the California policy. We
estimate the model given in equation (3) separately for the overall population, Blacks, and
Whites using two-stage least squares, where we instrument for air pollution using the fitted
vessel tonnage and local wind conditions.** The pollutant concentrations are standardized
by their sample mean and standard deviation. The standard errors are clustered by zip
code-port and day.

Table 3 presents the results of the second stage of the instrumental variables estimation,
showing the effect of increased air pollutant concentrations on hospital visits per million
residents for respiratory, heart, and psychiatric problems. Panel A shows the results for the
overall population within 25 miles of port facilities, while Panels B and C show the results
for Blacks and Whites, respectively.®> Each estimate represents an individual regression.

VOC-limited for O3 formation (the opposite is NOy-limited), where the NOx concentrations are relatively
high, and increases in NOy emissions may not change O3 concentrations. Our study covers a larger set of
port locations that likely consists of both NOy-limited and VOC-limited areas.

3We obtain fitted vessel tonnage from equation (5) using all 27 US ports from 2001 to 2016.

%5Tables A.14-A.16 also present more details behind the compiled Table 3, including adjusted R? and the
numbers of observations. Importantly, the test statistics show that we again have a strong first stage. For
the pooled estimation, the first-stage F-statistics range from 28 to 79. The first stage is also strong when we
split the sample by race (Tables A.15 and A.16). In addition, the p-values from the Anderson-Rubin and
Stock-Wright tests help us further rule out the presence of weak instruments. Because there are in total 35
variables (including interaction terms) in the first-stage estimation, we do no show the estimated coefficients
in tables. Instead, Figure B.8 presents the adjusted predictions of pollutant concentrations with respect to
wind direction and wind speed based on the first-stage regressions of equation (4). The results show that as
wind speed increases, pollutant concentrations decrease for most wind directions. At each wind speed level,
the wind direction categories [0, 45) and [45, 90) seem to have larger effects (either positive or negative) on
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The results in Panel A show significant effects of all four pollutants we are studying on
hospital visits for the overall population. For example, a one standard deviation increase
in CO leads to an additional 10.46 visits for all respiratory illnesses, 3.16 visits for all
heart-related diseases, and 1.87 visits related to all psychiatric conditions (per million
residents per day). The effects of a one standard deviation increase in SO, are the largest.
There are apparent effects of NO, and PM; 5 as well, but they are an order of magnitude
smaller than SO;. The results for psychiatric disorders are especially notable as there are no
similar causal estimates in the literature. For respiratory and heart ailments, we find that
our results are roughly in line with the literature, although somewhat smaller than some
estimates and larger than others, depending on the exact health effect and pollutant (see
Appendix C.1). This may not be surprising because we are focusing on the area around
ports, which may be different than other areas.*

Comparing the results in Panels B and C of Table 3 illuminates striking differences in
hospital visits by race. The rate of hospital visits per million residents is more than double
for Blacks than for Whites in nearly all categories of pollutants we study. For instance,
there are only 9.0 visits related to respiratory illnesses per million residents from a one
standard deviation increase in SO, exposure for Whites, and 39.1 for Blacks. The rate of
heart ailments is also higher for Blacks. While we showed an economically and statistically
significant effect of air pollution on psychiatric-related hospital visits in the pooled sample,
the effects are not significant when using only the Black subsample, possibly due to the
smaller sample size. On the White subsample, we observe significant results (at the 5-10%
levels) similar to those in the overall results for the all psychiatric category.®”

Because Blacks and Whites may have differences in baseline health, we estimate the
elasticities of the effect of pollution on hospital visits, where hospital visit rates and
pollution measures are scaled by the inverse hyperbolic sine (IHS) transformation. The
IHS transformation has a similar interpretation as a logarithmic transformation, but zeros
are defined. The estimates can be interpreted as percentage changes in the hospital visit
rate due to a one percent increase in pollutant concentrations. Table A.18 shows that most
elasticities associated with respiratory and heart illnesses are significant and most estimates
are greater for Blacks than Whites, especially for upper respiratory ailments.

pollutant concentrations.
%Table A.17 presents the OLS estimates for the same specifications. Some OLS estimates are insignificant,
and nearly all OLS estimates have a smaller magnitude than their corresponding instrumented estimates.
%Figure C.1 presents results using the recentered influence function approach pioneered by Firpo et al.
(2009) and used recently by Currie et al. (2020). Appendix C.2 provides more details on this approach. We
find that most air pollutants have a much larger impact on Blacks than Whites at the upper quantiles of the
distribution of hospital visit rate, providing deeper insight into our primary results.
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A natural question is whether the difference between Blacks and Whites is statistically
significant. We thus test for the equality of the estimates across Blacks and Whites.*
The test results in Table A.19 show that the differences between Blacks and Whites are
positive for all ailments and significant for respiratory ailments, indicating that respiratory
issues are the underlying driver of the racial disparities. We also estimate (3) using
differences in hospital visit rates between Blacks and Whites as the dependent variable,
restricting the data to zip codes with hospital visits for both Blacks and Whites (Table
A.20). We again observe that the differences in respiratory issues are positive and significant.

While the focus of this paper is the racial gap between Blacks and Whites, we also
estimate the effects of air pollution on hospital visits for Hispanics, which are shown in
Table A.21. When compared to the results in Table 3, Hispanics have higher hospital visit
rates associated with respiratory ailments than Whites but lower rates than Blacks. We
also observe significant estimates associated with psychiatric illnesses for Hispanics.*

When interpreting these estimates, it is important to keep in mind several crucial points.
The estimated health effects may not be entirely attributable to a single pollutant since
some pollutants may be co-emitted with others. In an extension below, we also estimate the
joint effects of certain pollutants on hospital visit rates. Another crucial point is that some
people who are ill may choose not to visit hospitals due to restricted access to medical
resources or the opportunity costs of spending time in a hospital. Some hospital visits may
also be pre-scheduled. These are standard caveats in the literature using hospital visit data.

Another important point is that these estimates of health effects focus on the con-
temporaneous effects of air pollution on health. There may also be longer-term effects,
including cumulative effects or symptoms that arise a few days later. Thus, we estimate
our model using different time windows up to 28 days following a pollution exposure for
the overall population, Blacks, and Whites.%’ Figures B.9-B.11 illustrate that the estimates
gradually increase with the length of the time window for respiratory illnesses, suggesting
cumulative health effects of air pollution. For psychiatric and heart illnesses, the effect of
air pollution appears to be flat and even decreasing for Blacks and Whites after 21 days.

To provide further context, we calculate the effects of one additional average-tonnage

vessel in a port over a year on air pollution-induced annual hospital visits and hospital

Bo—Pw
JsER2+sER2”
and Whites, and SEf, and SEf,, are the associated standard errors.

¥We also explore heterogeneous effects of air pollution by age and sex. Table A.22 shows that there are
larger effects on children for respiratory illnesses and larger effects on the elderly for psychiatric and heart
maladies. Table A.23 shows little difference in the effect between males and females.

“These estimations include the commensurate number of leading weather controls.

3%The approach uses the following Z test: Z = where f; and 8, are point estimates for Blacks
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medical costs, as shown in Table 4.4 Panel A shows the results of annual hospital visits
for residents living within 25 miles of a major port facility. For Blacks, one additional
vessel in port results in 2,500 respiratory hospital visits, 520 heart-related visits, and
98 psychiatric visits (per million residents in a year in California). This amounts to 3.1
additional hospital visits per thousand Black residents in a year. For Whites, one additional
vessel in port results in 570 respiratory hospital visits, 300 heart-related visits, and 210 psy-
chiatric visits (per million residents in a year). This adds up to 1.1 additional hospital visits
per thousand White residents in a year, only about one-third of the visits for Black residents.

Panel B of Table 4 calculates the cost of these additional hospital visits. For this
calculation, we use the 2017 inpatient discharge data from the Centers for Medicare and
Medicaid Services (CMS).#? The results of the calculation show that one more average-
tonnage vessel in port over a year leads to $28 in medical costs per capita for Black residents
and $10 for White residents.

5.3 Evidence on the Mechanisms Behind the Racial Disparities

Our findings show clear racial disparities in the health effects of air pollution in port areas.
A natural question that arises is whether these disparities are due to Blacks living in more
polluted areas or Blacks having greater vulnerability to air pollution exposure (Hsiang
et al., 2019). We showed in Section 3.7 that the Black population tends to have greater
exposure to pollution than the White population. If we look at hospital patients, Blacks
again are from zip codes that also face higher pollution exposure. This underscores that
differences in exposure are at least part of the story.

To explore whether Blacks have higher marginal damages in response to the same
pollutant exposures than Whites (i.e., are more vulnerable to exposure), we group zip codes
surrounding the California ports by their average daily PM, 5 pollution levels. Specifically,
we focus on the zip codes with available hospital visit data for Blacks and Whites and divide

“We calculate the results in the following steps: (1) calculate pollution concentration changes for the
studied pollutants due to one more vessel in ports (i.e., a 589,000 Mt increase in vessel tonnage) based on
the estimates in Panel A of Table 2; (2) calculate changes in annual hospital visits due to the changes in
standardized concentrations of CO, NO,, PM; 5, and SO, based on the estimates in Table 3; (3) select the
largest values across the air pollutants for each illness category for a bounding estimate. We also estimate the
reduced form results for the relationship between vessel tonnage and health outcomes in Section C.3.

“2The Medicare data provide national average inpatient payments and total discharges for each diagnosis,
which is categorized by the MS-DRG code (see https:/ /www.cms.gov/Research-Statistics-Data-and-Systems/
Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Inpatient2017). We use the web service
(http:/ /icd10cmcode.com) based on CMS’s ICD-10 MS-DRG Conversion Project to convert the ICD-10
diagnosis codes to the MS-DRG codes. The mapped MS-DRG codes for the studied primary illness groups
are presented in Table A.2. We calculate the average medical costs for each of the illness groups, weighted by
the total number of discharges.
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them into eight groups by pollution percentile. We assume that zip codes in each percentile
group have similar pollution exposure levels. We cannot entirely rule out differences of
exposure to air pollution within zip code groups, but we see households of different races
well distributed across zip codes around ports and zip codes are fairly small areas in cities,
so we expect that differences in pollutant concentrations within zip code groups to be
small.

We estimate equations (3)—(5) for each group of zip codes of similar pollution exposure.
Figure 4 illustrates that the four pollutants have larger effects on hospital visit rates (related
to respiratory, heart, and psychiatric) for Blacks than Whites across percentiles of pollution
exposure. These results suggest that Blacks face higher damages from air pollution
exposure than Whites even if exposure is held roughly constant, i.e., Blacks are more
vulnerable to pollution exposure than Whites.

The difference in vulnerability may come about due to a wide range of determinants
that differ across races, such as baseline health, income, avoidance behavior, defensive
investments, or other socioeconomic characteristics. We explore this by collecting health
and economic characteristics data for areas surrounding the major ports in California and
compare them for Blacks and Whites. Figure C.2(a) shows that Blacks have worse health
conditions (e.g., smoking rate, obesity rate, no exercising rate, and poor or fair general
health rate) than Whites, implying reduced baseline health for Blacks. In addition, Figure
C.2(b) indicates that Blacks also have worse socioeconomic status than Whites, with higher
poverty rates, reduced health insurance coverage, lower income per capita, and lower levels
of education. All of these factors may make Blacks more vulnerable to health risks from
pollution exposure. Figure C.2(c) further shows that the selected economic characteristics
are correlated with the Black-White health gap in port areas. The detailed analysis and
data sources are presented in Section C.4.

What is notable is that the gap in the causal effects of pollution on hospital visits is
remarkably persistent across pollutants and demographics. Figure 5 stratifies the data
and estimates the model for zip codes based on being above or below the median income,
health insurance coverage, education level, and poverty level. We observe that the gap
between Blacks and Whites persists even within each of these group. For example, even
higher-than-median income Blacks face a greater effect of pollution than Whites. But

income, health insurance, education, and poverty all clearly play a strong role.

5.4 Placebo Tests, Extensions, and Robustness Checks

In this section, we conduct two placebo tests and a set of extensions and robustness checks
to support our identification and highlight the channels driving our results.
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Placebo Tests. In the first placebo test, we consider the possibility that lagged distant
tropical cyclones might affect air pollution through channels other than port traffic that still
have effects days later. Should this be the case, it would imply that our instrument directly
affects air pollution through a channel outside of port traffic. To test this possibility, we
examine air pollutant concentrations in areas far from ports (e.g., 75-100 miles) but similarly
distant from the tropical cyclones as the ports. We regress air pollution concentrations in
these “control” areas far from the ports on the lagged distant tropical cyclone instrument.
Table 5 shows that the coefficients from this estimation are quite small relative to their
sample means and are not significant for any of the pollutants, in clear contrast to our
results in Table 2. This finding supports our argument that lagged distant tropical cyclones
are unlikely to have a lingering effect on weather patterns and air pollution through
channels other than port traffic.

In our second placebo test, we consider the possibility that some other factor relating to
port traffic may be influencing hospital admissions besides air pollution. If this were the
case, one would expect hospital admissions for other illnesses that are clearly unrelated to
pollution exposure also to increase with port traffic. For example, arterial embolisms and
appendicitis are all maladies that are highly unlikely to relate to air pollution exposure.
Table A.24 estimates the same specifications for the overall population as in Panel A of
Table 3 for these prognoses. All of the coefficients are small and not significant at even the
5% level. This result supports our contention that air pollution is actually the cause of the
health impacts we estimate.

Extensions and Robustness Checks. Table A.25 presents a set of robustness checks that
use slightly different model specifications of the effect of vessels in port on pollutant
concentrations. Panels A-C show that temporal fixed effects and weather controls are
important for identification. Panel D shows that the results with fewer weather controls
are reasonably close to the primary specification, suggesting that the results are not very
sensitive to the exact specification of weather controls. Panel E presents the results of
pollution monitors within 12.5 miles of the major ports rather than 25 miles. The results
are reasonably close to the baseline estimates.

We also run robustness checks relating to the exact definition of our lagged distant
tropical cyclone instrument. In the primary specification presented above, we used a
dummy variable for the existence seven days prior of tropical cyclones that are at least 500
miles away from ports (and we exclude any observations where a cyclone is within 200

miles within a two-day window). Table A.26 presents a variety of the robustness checks
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relating to the instrument. These include using an 800-mile threshold to exclude cyclone
observations to further reduce the likelihood of tropical cyclones influencing air pollution
directly, using different numbers of days for the lag instead of seven days, using multiple
lags as instruments, using limited information maximum likelihood (LIML) to address any
chance of a weak instrument, and using the count of cyclones rather than a dummy for the
existence of tropical cyclones. The results are reasonably close to the primary results in
Table 2 for all specifications.*?

We construct pollution measures in our primary analysis by taking inverse distance
weight averages of monitor-level data. There are not monitors in every zip code, so
one concern might be measurement error in pollution exposures due to the interpolated
pollution measures. There is no obvious reason why this would be a problem for racial
disparities, but for good measure, we conduct a robustness check by replacing the monitor
data with zip code-level satellite-based measures for PM; 5 concentrations from Reid et al.
(2021). Table A.28 shows that the results are close to the primary results shown in Table
3.4 We also conduct a robustness check for Figure 4 using the satellite-based pollution
measures. The estimates, presented in Figure B.12, are again close to the primary results.
Another potential concern when using pollution monitor data could be a strategic response
to regulations, such as endogenous monitoring (Zou, 2021). We explore this possibility and
find no clear evidence that port traffic impacts the number of active monitors surrounding
ports (Table A.29).

Another important analysis, which also sheds light on the drivers of our results, is to
examine the joint effects of air pollutants on health outcomes. Our primary specifications
examine each air pollutant separately, as is common in the literature. However, air pol-
lutants may be co-emitted and co-transported, so some of the coefficients for individual
pollutants may include the effects of multiple pollutants. Identifying joint effects is often
more challenging due to the need to instrument for more than one variable, but it is
possible. Local wind can impact the spatial dispersion of pollutants differently, and higher
wind speeds may even influence the need for ship engine thrust and the rate of pollutant
emissions. Thus, wind direction and wind speed continue to be useful instruments,

providing a sufficient number of instruments. We focus on the joint effects of CO, NO,, and

#In addition, we run two specifications including all of the removed observations due to the tropical
cyclones being close (e.g., within a 200-mile radius) to the ports and excluding 21 days of observations for any
port that has a cyclone within 200 miles of the port. The second specification reduces the concern about the
lingering effects of severe storms striking port areas. Table A.27 shows that the estimates remain significant
and are quite similar to our primary results.

#“#We conduct another analysis by stratifying zip codes with similar distances to their nearest pollution
monitors. We then run the baseline regressions. Figure B.13 shows clear racial disparities across the zip code
groups.
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SO; that are directly emitted from engine combustion in ports. Because NO, and SO, are
precursors to PM; 5 with an conversion rate of several percent per hour (Luria et al., 2001;
Lin and Cheng, 2007), it is difficult to differentiate the effects between PM; 5, NO;, and SO,
(Deryugina et al., 2019). We use the sample of zip code-port-days where measurements for
CO, NO», and SO, are all available.

Table A.30 presents the results of the joint estimations.*> For the joint effects of CO
and NO, on respiratory ailments (column (1)), the estimates associated with CO are
significantly positive, and the estimates associated with NO; are negative and insignificant
for the overall population. The negative sign is consistent with findings on near-source
atmospheric chemistry, indicating that an increase in NO, may decrease O3 concentrations
in certain settings (Sillman, 1999; Seinfeld and Pandis, 2016). It is also consistent with
results in Schlenker and Walker (2016). The coefficients for Whites mirror those for the
entire population, while for Blacks we find a positive coefficient.

The coefficients on CO in column (2) of Table A.30 are significant for the overall pop-
ulation and the White subsample. For Blacks, SO, appears to be the driver for health
outcomes. Blacks tend to live closer to ports and thus are more likely to be exposed to
emissions from fossil fuels with high sulfur content (Wan et al., 2016). We see similar
results when examining the combination of CO, NO;, and SO, in column (3), with SO,
having the strongest effect of increasing hospital visits, and with NO; having a negative
coefficient for all three groups (at the 1% significance level for the overall population, 10%
significance level for Whites, and insignificant for Blacks). The remaining columns show
fewer significant results, but the explanations are likely similar. These results underscore
the complexity of joint estimation of co-pollutants.

In another robustness check, we explore whether additional road congestion due to
more port activity may be causing some of our health effects findings rather than air
pollution. When there are more vessels in ports and greater tonnage being transferred,
one would expect there to be more truck traffic. Our primary findings include the effect of
additional air pollution from increased truck traffic. Still, one might be concerned that
some of the estimates—such as those relating to mental health—could be influenced by
additional road congestion. Thus, we bring in vehicle detection data from the California

Department of Transportation Performance Measurement System, which contains daily

“While some first-stage F statistics (i.e., the cluster-robust Kleibergen-Paap Wald F statistics) are below the
threshold of ten, the Anderson-Rubin and Stock-Wright LM S statistics suggest that weak instruments should
not be a concern. The standard Cragg-Donald Wald F statistics are also larger than ten (not reported). For
joint estimations, we only report the results for the overall categories of respiratory, heart, and psychiatric
illnesses.

%We also jointly estimate the model only using zip codes closer to ports, finding mostly larger estimates
(see columns (1)—(3) in Table A.31).
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highway traffic data at the ‘vehicle detection station” level for 2010-2016.#” For each hour of
the day, these data include average daily delays (measured in vehicle hours spent to pass a
freeway segment) at various threshold speeds (i.e., 35, 40, 45, 50, 55, and 60 miles per hour)
for each station.

Our analysis selects all of the stations located within 10 miles of the six major ports
in California, and we include the station-days with at least 40% of observations. We
then regress traffic delay measures at the various threshold speeds on the fitted vessel
tonnage or the fitted vessel count. Table A.32 presents these results, which show no
significant coefficients across panels and columns, despite very large samples. We take
this as suggestive evidence that our instrument—vessels in ports predicted by distant and
lagged cyclones—is unlikely to substantially influence road congestion, indicating that air
pollution is much more likely to be the channel through which our results occur.

We also consider whether wind may affect hospital visits through factors other than air
pollution. Strong winds may lead to fewer outdoor activities, thus reducing exposure to
air pollutants. We run a robustness check excluding days with wind speeds greater than
3.3 meters per second, with this threshold chosen because it is the upper end of the “light
breeze” designation under the Beaufort Wind Scale. The results are reasonably robust to
the exclusion of intense windy days (see Table A.33).

One minor concern might be that our racial disparity findings are due to greater direct
exposure to pollution at ports by Blacks if a higher percentage of dock workers are Black.
However, the total number of workers in ports is small relative to the population living in
the neighborhoods surrounding ports. For example, there are 12,938 employees in port
and harbor operations in the United States in 2021, which is only about 0.03% of the total
39 million population residing in port areas.** Moreover, 71% of port workers are men,
while we find effects on women as well (Table A.34).4

For additional reference, Table A.35 shows the effect of air pollution on total hospital
visits from any cause for the overall population, Blacks, and Whites. These include the
illnesses examined in this study and all others recorded in the hospital visit data set. We
see that all estimates are statistically significant and larger than those in Table 3. While
respiratory and cardiovascular hospital visits are known to be the main ailments caused by
air pollution, this robustness check suggests that other, non-standard health outcomes are
also likely to increase with pollution exposure.

#The data are obtained from http://pems.dot.ca.gov.

8See  https:/ /www.ibisworld.com/industry-statistics/employment/port-harbor-operations-united-
states/.

“See https:/ /www.bls.gov/cps/cpsaat18.htm.
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Finally, we run a set of further robustness checks. We calculate hospital visit rates
based only on principal diagnoses rather than the combination of principal and secondary
diagnoses. The results (Table A.36) are similar to our baseline results, although the effects
are a bit smaller. We estimate the model separately for each of the three hospital visit data
sets we pool for our health results. Tables A.37-A.39 illustrate that we still find significant
health effects (and racial disparities) from air pollution, and emergency room visits logged
in the Emergency Department Data seem the main driver, although again the effects are
smaller, as would be expected. We run our primary specification using LIML instead of

two-stage least squares (Table A.40) and again find very similar results.

6 Policy Implications

Our results showing racial disparities in the effects of port pollution on health outcomes
raise the question of whether policy can help alleviate the disparities. Policy could
directly reduce exposures by cutting emissions or address the drivers of the racial gap in
the air pollution response functions. However, policy has largely focused on reducing
exposures. One example is a regulation in California to reduce emissions from port
facilities by reducing fossil-fuel usage in ports, perhaps most importantly by electrifying
major port activities. We employ a regression discontinuity design (RDD) to find the causal
effect of this policy. Then we use a dynamic simulation to explore whether generating
additional electricity to power docked ships produces sufficient emissions to offset the

health improvements from reduced ship emissions.

6.1 Brief Background on Port-related Policies

To date, several policies have been implemented to regulate emissions from marine ships.
Perhaps the most prominent policy, the MARPOL Annex VI Protocol by International
Maritime Organization, adopted in 1997, regulates sulfur content in marine fossil fuels
to limit emissions of NOy, SOy, PM, and VOCs in the ocean.® More recently, attention
has turned to replace fossil fuels altogether by electrifying port activities. This could
include allowing docked vessels to turn off their auxiliary electricity-generating engines and

instead use onshore electricity from the grid. Other port activities could also be electrified.>!

%0See http:/ /www.imo.org/en/OurWork/Environment/PollutionPrevention/ AirPollution /Pages / Air-
Pollution.aspx.

51 At the national level, United States has implemented several programs to reduce emissions from other
port facilities, including the Ports Initiative, EPA’s Diesel Emissions Reduction Act (DERA) grant program,
Department of Transportation’s Transportation Investment Generating Economic Recovery (TIGER) and
Congestion Mitigation and Air Quality Improvement (CMAQ) programs, and the Department of Energy’s
Clean Cities program (EPA, 2016).
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California has the strongest regulations on port emissions in the United States. The
centerpiece policy is the “Ocean-Going Vessel At-Berth Regulation,” which was adopted
in December 2007. This regulation limited air pollutant emissions from container ships,
passenger ships, and refrigerated cargo ships at the six major California ports.>? There
are two compliance options: use onshore electricity when docked or find an equivalent
emission reduction through alternative fuels or emission control equipment. Beginning on
January 1, 2010, vessel operators were required to reduce at-berth emissions of NOy and
PM by 10%, and since then the policy has been tightened further.® Our analysis focuses
on the first phase of the regulation beginning on January 1, 2010.

6.2 Effect of California’s Regulation on Air Pollutant Concentrations

Empirical Strategy. Our empirical strategy relies on the sharp discontinuity in how port
activities were fueled on January 1, 2010. Onshore electricity and cleaner fossil fuels are
more expensive than conventional fuels, and thus there was no incentive for ship operators
and port operators to comply before this date (EPA, 2017). It is very likely that some of
the at-berth charging infrastructure was already installed prior to this date, but it was not
being used until ports were required to comply (and all ports did comply).

Our regression discontinuity design follows a model specification similar in principle to
several recent studies (e.g., Davis, 2008; Auffhammer and Kellogg, 2011; Chen and Whalley,
2012; Anderson, 2014; Bento et al., 2014):

Pipt = pPOliC]/t + f(Datet) + ﬁth + WitG + 6t + Hip + eipt- (6)

The dependent variable P;,; is the log of the concentration of a local air pollutant in
monitor i that is mapped to port p on day . Policy; is a dummy variable that is equal to
one when the policy is in effect on day t and zero otherwise. The expression f(Date;) is a
flexible function of the date. The dates are normalized to be zero at the first date of the
policy; hence, the coefficient p represents the treatment effect of the policy. The variable V),
is the log vessel tonnage in port instrumented using our lagged distant tropical cyclones
instrument.>* We also include the same weather controls (W;;) and fixed effects (6; and

Uip) as in equation (1).

52See https:/ /ww2.arb.ca.gov/resources/documents/berth-fags.

%For instance, beginning on January 1 2014, at least 50% of a fleet’s visits must use onshore electricity each
quarter of a year and auxiliary engine power generation must be reduced by 50%.

%We include the vessel tonnage because it controls for possible abrupt changes in the number of vessels
visiting ports that might occur if there is an avoidance response of vessels to the policy implementation
(Klotz and Berazneva, 2021). Our results are robust to excluding this variable.
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The flexible function of the date is crucial for identification, as it controls for potential
endogeneity from time as the running variable (Imbens and Lemieux, 2008). We specify
f(Date;) with two terms: Date; and Policy; X Date;. Thus, our final specification is a

local linear regression discontinuity design, following Anderson (2014):
Pipt = pPolicy; + mDatey + naPolicy; X Date; + BV + Wit O + 04 + uip + eipr. (7)

We estimate this equation using an augmented local linear approach to increase the
power of estimation, following Hausman and Rapson (2018). The approach consists of two
steps. We first use the full data sample to regress pollution measures on the exogenous
variables (e.g., weather controls, instrumented log vessel tonnage, and fixed effects). We
then regress the residuals obtained from the first step on the local linear terms (i.e., Policy;,
Datey, and Policy; X Date;) within a narrow bandwidth of dates. We specify a uniform
kernel (Imbens and Lemieux, 2008; Anderson, 2014) and choose a bandwidth of 60 days
on each side of the policy threshold in the primary specification. We also run robustness
checks with different bandwidths. This procedure removes the necessity of using a global

polynomial and the associated overfitting concerns (Hausman and Rapson, 2018).

Results. Following the augmented local linear approach, we first obtain the residuals
by regressing air pollution measures on all exogenous regressors specified in equation (7)
using the full data sample (2001-2016) across the six major California ports. Figure 6 plots
daily average residuals for NO; with a shorter time window around the first policy date
(normalized to be zero). Each point is an average of residuals across all monitor-port pairs.
We see clear downward breaks of linear trends occurring at the first date of the California
at-berth regulation, suggesting that the regulation results in lower concentrations of NO»
in port areas (there are similar declines for most other pollutants but without significance).

Table 6 presents the regression results, where each column reports results from a
separate regression for a pollutant. The estimates in the first row indicate the effect of
the regulation. Consistent with Figure 6, the coefficient for NO, is significant at the 5%
level, as shown in columns (2). The regulation leads to a decrease in average pollution
concentrations by 26% for NO;. There also appear to be reductions in CO emissions, but
the coefficient is not significant at the 5% level.

5We conduct bootstrap inference to test the estimates associated with the policy variable, following the fast
wild cluster bootstrap algorithm in Roodman et al. (2019). For each regression, we obtain 10,000 bootstrap
draws with replacement clustered by monitor-port and day, which is comparable to the primary specification
with clustering by monitor-port and day. Figure B.14 presents the bootstrap 95% confidence intervals, which
are fairly close to the primary specification results.
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We next calculate the avoided annual hospital visits and hospital-related medical costs
per capita by race due to the California regulation.® Table 7 shows that the regulation
avoids 5.5 hospital visits per thousand Black residents per year associated with psychiatric,
respiratory, and heart-related illnesses. It also leads to 2.1 avoided hospital visits per
thousand White residents per year. The avoided medical costs per capita per year for Black
residents come out to $48, which is much larger than the $19 for Whites. These results
highlight how the policy alleviated the Black-White gaps in air pollution-induced hospital
visits around ports.

Simple calculations suggest that the benefits of avoiding adverse health outcomes from
this policy outweigh the costs. The California Air Resources Board estimates that the
annual regulatory costs for affected businesses and port authorities due to the Ocean-
Going Vessel At-Berth Regulation vary from $36 million to $167 million in 2017 USD.5” Our
estimates suggest that the first phase of the policy saves $302 million/year in medical costs.

We also run two placebo tests for the RDD analysis. The first test moves the discontinuity
from the actual date of policy implementation to a different date: either January 1, 2009,
or January 1, 2011. If seasonal effects drive our results, the coefficients would be similar
to our primary results. The second placebo test examines regions further away from the
ports to confirm that something else statewide was not affecting air pollution on January 1,
2010. We use the data from air pollution monitors 75-100 miles from the California ports.
Table A.41 shows the results of these placebo tests. The coefficients tend to be insignificant
and generally close to zero, providing further evidence supporting our identification.

The results from varying the bandwidth are shown in Figure B.15, and indicate that the
exact choice of bandwidth makes little difference to our estimates. We also specify a ‘donut’
model in which a certain number of days are removed on either side of the policy threshold
(Barreca et al., 2011). This specification addresses a potential concern about short-term
avoidance behaviors by vessels in response to the policy. Figure B.16 presents the results
with various donut periods, showing that the results do not deviate substantially from our

primary estimates.

%We calculate the results with the following steps: (1) calculate absolute pollution concentration changes
based on the estimates in Table 6; (2) calculate changes in annual hospital visits due to the changes in CO,
NO,, PM; 5, and SO, concentrations based on the estimates in Table 3; (3) for each illness category, select the
largest values across the air pollutants (to avoid double-counting due to the possibility of joint emissions).
Note that these results do not account for any increases in emissions from the power sector.

%See https:/ /ww3.arb.ca.gov/regact/2007 /shorepwr07 / tsd.pdf.

%Table 7 presents that the California at-berth regulation results in $20 savings per capita for illnesses
related to respiratory, heart, and psychiatric illnesses. There are 15.08 million residents living within 25 miles
of the major ports in California. The medical costs of $302 million are the multiplication of $20 and 15.08
million.
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6.3 Dynamic Simulation

If the California regulation reduced fossil fuel use in ports but increased fossil fuel use
from electricity generation, it is possible that the pollution was just shifted from one
place to another. To explore this possibility, we use a dynamic simulation of the entire
energy system in the United States. Specifically, we implement a reference case scenario
based on the US Energy Information Administration (EIA) Annual Energy Outlook and
a scenario that gradually shifts at-berth energy consumption from fossil fuel-powered
auxiliary engines to electricity across all ports in the United States. Then we examined
how electricity generation and emissions change.

To perform this exercise, we use the National Energy Modeling System (NEMS) run
on a Yale server.” This model is a general equilibrium model that includes all major
energy markets and explicitly depicts major energy supply sectors (coal, natural gas,
oil), demand sectors (residential, industrial, commercial, and transportation), conversion
sectors (electricity and liquid fuels), macroeconomic activities, and international energy
markets (EIA, 2009). It has an electricity dispatch model with geographic disaggregation
based on the actual fleet of generating plants in the United States. Besides producing
well-respected government forecasts, it has been used for decades by researchers to
analyze energy markets (e.g., Palmer et al., 2010; Auffhammer and Sanstad, 2011; Wilk-
erson et al., 2013; Gillingham and Huang, 2019, 2020). It is especially useful for our
research question in that it contains a detailed link between energy consumption in ports
and electricity generation. Appendix D contains details on the model and the two scenarios.

Figure B.17 presents the simulation modeling results for CO, NOy, PM;5, and SO,
emissions from vessels and electricity generation in the United States for the reference
case and the policy scenario.®® Notably, the reduction in emissions from marine vessels is
substantial, while the increase in emissions from electricity generation is extremely small.
The reason for this result is simple: the power sector uses much cleaner energy sources
on average (i.e., natural gas and renewables) and is adopting technologies to mitigate
emissions over time. Line losses are modeled and have a negligible impact. While every
simulation model should be viewed as an informed approximation and should not be
taken as a causal estimate, this finding from the simulation modeling suggests that the
localized air pollution benefits in reducing racial disparities from port emission regulations
are very likely to outweigh any negative effects of additional air pollution from increased

%The model we use is identical to EIA’'s NEMS with minor configuration adjustments to enable us to run it
on a Yale server.

®0Table A.42 presents the associated fossil fuel and electricity consumptions by marine vessels across the
scenarios.
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electricity generation. The result is likely to be even stronger in California, which has an
especially clean electricity grid.

7 Conclusions

This paper establishes a set of causal relationships from port traffic to air pollution and
racial disparities in health outcomes across racial groups. We use a quasi-experiment,
where port traffic is influenced by lagged distant tropical cyclones, to ascertain the effect
of port traffic on local air pollution and hospital visits. To the best of our knowledge,
we are the first to investigate how a highly emitting point source—port facilities—can in-
fluence racial disparities in health and how port policy can improve distributional outcomes.

Our results show that adding another vessel or increasing the overall vessel tonnage in
ports will increase air pollution concentrations in the areas surrounding the ports. This
leads to increased hospital visits for respiratory, heart-related, and psychiatric ailments
that disproportionately affect Black residents. One additional vessel in port over a year
leads to 3.1 additional hospital visits per thousand Black residents per year and 1.1 visits
per thousand Whites. We provide new evidence on mechanisms: the two racial groups are
not only receiving different pollution exposures, but appear to have differing responses to
exposure. Policy to reduce emissions from ships at berth may help reduce the disparities,
and we show that a major California regulation disproportionately benefits Black residents.
This California regulation reduces hospital visits by 5.5 per thousand Blacks per year and
2.1 per thousand Whites.

The findings of this study lay the groundwork for further research uncovering racial
disparities in air pollution in a variety of settings with highly polluting point sources,
informing discussions about environmental justice, and providing guidance to policymakers
aiming to improve public health and reduce inequality.
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Tables and Figures

Table 1: Summary statistics of main variables

Within 25 Miles of US Ports

Within 25 Miles of CA Ports

Mean SD Min Max Mean SD Min Max
Panel A: Port
Tonnage (100,000 Mt) 4.25 4.00 0.00 49.30 5.89 4.83 0.00 26.07
Vessel Counts 14.84 14.12 0.00 157.00 10.23 7.59 0.00 43.00
Panel B: Pollution
CO Mean (ppb) 499.42 398.92 0.00 45666.67 408.82 217.71 0.00 14840.56
NO; Mean (ppb) 13.64 10.21 0.00 99.12 14.88 8.49 0.29 56.77
PM; 5 Mean (yg/m3) 10.66 6.94 0.00 239.20 10.33 5.35 0.00 60.70
SO; Mean (ppb) 2.12 3.20 0.00 121.48 0.63 0.48 0.00 8.22
Panel C: Hospital visits per million residents — Overall population
Asthma 67.85 64.69 0.00 3572.04
Upper Respiratory 42.71 50.36 0.00 3912.23
All Respiratory 227.03 147.87 0.00 12791.29
All Heart 140.05 92.80 0.00 1339.42
Anxiety 45.28 47.06 0.00 743.83
All Psychiatric 137.57 107.62 0.00 2231.48
Panel D: Hospital visits per million residents — Black
Asthma 203.80 292.77 0.00 5771.08
Upper Respiratory 94.15  201.07 0.00 4488.62
All Respiratory 527.54 549.55 0.00 16992.63
All Heart 240.74 316.69 0.00 4664.18
Anxiety 65.60 165.94 0.00 2991.03
All Psychiatric 273.04 398.59 0.00 6511.63
Panel E: Hospital visits per million residents — White
Asthma 81.04 139.02 0.00 4248.09
Upper Respiratory 34.86 94.74 0.00 3992.02
All Respiratory 294.03 324.38 0.00 9398.50
All Heart 231.28 244.23 0.00 4436.56
Anxiety 74.68 129.58 0.00 2851.71
All Psychiatric 247.73 316.29 0.00 8458.65

Notes: This table presents summary statistics of the main variables, including mean, standard deviation,
minimum, and maximum. The variables are split into three panels, i.e., port, pollution, and health. The
data are obtained from the US Army Corps of Engineers, the US EPA Air Quality System, and the Office of
Statewide Health Planning and Development of California.
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Table 2: Effect of vessels in ports on air pollutant concentrations in the United States

Dependent variable: pollutant concentration

CcO NO, PMy5 SO, CcO NO, PM, 5 SO,
(1) (2) 3) 4) ©) (6) ) 8)
Panel A: IV estimates
Vessel Tonnage 23.19* 117 1.20* 0.15
(13.58) (0.34) (0.55) (0.12)
Vessel Counts 10.65* 0.54™* 0.53* 0.07
(6.44) (0.17) (0.26) (0.06)
1st-Stage F Stat. 26.79 35.27 21.95 25.52 17.18 21.37 13.13 15.22
Adjusted R? 0.53 0.72 0.31 0.43 0.53 0.70 0.29 0.43
Observations 524,197 604,632 428,220 484,745 524,197 604,632 428,220 484,745
Panel B: OLS estimates
Vessel Tonnage -1.01 0.05"* 0.05* -0.002
(0.71) (0.02) (0.02) (0.01)
Vessel Counts —0.08 0.01* 0.03** —0.001
(0.28) (0.01) (0.01) (0.003)
Adjusted R2 0.55 0.76 0.40 0.44 0.55 0.76 0.40 0.44
Observations 524,197 604,632 428,220 484,745 524,197 604,632 428,220 484,745

Notes: Panel A presents the IV estimates of the effect of port traffic on pollutant concentrations within a
25-mile radius of ports in the United States, while Panel B presents the corresponding OLS estimates. Each
entry presents an individual regression on a local air pollutant. In Panel A, the endogenous variables, vessel
tonnage and vessel counts, are instrumented by an indicator of seven-day lagged cyclones at least 500-mile
distant from ports. All regressions include weather controls, such as the quadratics of maximum, minimum,
and dew point temperature, precipitation, wind speed, and relative wind direction between a monitor-port
pair. All regressions also include county-by-year, month, day-of-week, holiday, and monitor-port fixed
effects. An observation is a monitor-port-day. Standard errors are clustered by monitor-port pair and day.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table 3: Effect of air pollution on hospitalization rates in California port areas, instrumental
variable estimation

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1 2) ®3) 4 ®) (6)
Panel A: Overall population
CcO 2.79"* 3.09" 10.46™ 3.16"* 0.69* 1.87**
(0.41) (0.64) (1.74) (0.63) (0.27) (0.65)
NO, 2.39"* 2,91 8.79" 3.09" 0.71 1.94*
(0.38) (0.61) (1.61) (0.58) (0.25) (0.61)
PM; 5 1.84" 2.21™ 6.73"* 2.19* 0.50™ 1.33*
(0.32) (0.51) (1.37) (0.49) (0.21) (0.50)
SO, 3.28™ 4.68™ 13.13"* 4.40" 1.19* 3.08"*
(0.63) (0.97) (2.57) (0.93) (0.40) (0.96)
Panel B: Black
CcO 7.81"* 5.38"* 20.44* 5.74 0.92 -0.04
(1.63) (1.43) (4.04) (1.79) (0.81) (1.88)
NO», 7.18* 8.77 23.32%* 5.95** 1.23 0.66
(1.68) (1.48) (4.23) (1.85) (0.85) (1.96)
PM;5 5.66"* 6.28" 18.00"* 3.77 0.38 -0.53
(1.28) (1.13) (3.29) (1.41) (0.60) (1.45)
SO, 10.87 16.35"* 39.10 8.23* 1.93 1.54
(2.54) (2.41) (6.65) (2.88) (1.35) (3.07)
Panel C: White
CcO 241 2.10" 9.55"* 4.02" 0.11 2.38"
(0.51) (0.41) (1.56) (1.16) (0.54) (1.25)
NO, 1.78 1.80* 6.84" 3.51 0.22 2.32*
(0.46) (0.40) (1.42) (1.01) (0.48) (1.12)
PM;5 1.53** 1.51* 5.55"* 2.78"* 0.16 1.82°
(0.41) (0.35) (1.29) (0.91) (0.43) (0.99)
SO, 2.05"* 2.63* 8.98"* 4.64™ 0.35 3.35"
(0.69) (0.58) (2.10) (1.49) (0.70) (1.63)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on contem-
poraneous hospital visit rate for the overall population, Blacks, and Whites. Each entry presents an
individual regression of an air pollutant on an illness category. Pollution concentrations are standardized
to their means and standard deviations, and they are instrumented by fitted vessel tonnage in ports,
wind direction, wind speed, and their interactions. All regressions include weather controls, such as the
quadratics of maximum, minimum, and dew point temperature, and precipitation. All regressions also
include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation
is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. The first-stage F statis-
tics range from 28 to 79 for Panel A, from 21 to 61 for Panel B, and from 27 to 83 for Panel C. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table 4: Effect of one additional vessel in a port over an entire year on hospital visits and
medical costs in California

All All All
Respiratory Heart Psychiatric
@ ) )

Panel A: Hospital visits per million residents

Black 2,500 520 98
White 570 300 210
Overall Population 840 280 200
Panel B: Medical costs per capita (2017 USD)

Black 22 5 1
White 5 3 2
Overall Population 7 3 2

Notes: Panel A presents the back-of-the-envelope calculations of the effect of one additional vessel in port on
annual hospital visits, based on the instrumental variable estimates in Tables 2 and 3. Panel B presents the medical
costs associated with the hospital visits in Panel A based on the payment data from the Centers for Medicare and
Medicaid Services. The average medical costs are $8,917 for psychiatric illnesses, $8,715 for respiratory illnesses,
and $9,679 for heart-related illnesses. Based on the US 2010 Decennial Census, the total population residing in
the zip codes within 25 miles of California’s major ports is 15.08 million, where 1.12 million are Black, and 5.07
million are White. All numbers are rounded to two significant figures.

Table 5: Placebo test on the effect of the cyclone instrument on air pollutant concentrations
in distant areas

Dependent variable: pollutant concentration

CcO NO, PMz 5 SO,

@) @ (3) (4)
Tropical Cyclone 15.67 0.01 -0.19 0.004
(10.28) (0.06) (0.12) (0.03)

Adjusted R? 0.54 0.72 0.33 0.48
Observations 82,278 135,801 98,568 70,950

Notes: This table presents the placebo test on regressing the instrumental variable of seven-day lagged cy-
clones that are at least 500-mile distant from ports on air pollutant concentrations in certain areas that are far
from ports (i.e., 75-100 miles from major US ports). Each column presents an individual regression on a local
air pollutant. All regressions include weather controls, such as quadratics of maximum, minimum, and dew
point temperatures, precipitation, wind speed, and wind direction. All regressions also include county-by-year,
month, day-of-week, holiday, and pollution monitor fixed effects. An observation is a monitor-day. Standard
errors are clustered by pollution monitor and day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table 6: Effect of California Ocean-Going Vessel At-Berth Regulation on air pollution, RDD
estimation

Dependent variable: residual of log pollution concentration

CcO NO, PM; 5 SO,
(1) 2) 3) 4
CA Regulation X Date -0.01* —0.004 -0.01* —0.005
(0.003) (0.002) (0.004) (0.01)
CA Regulation -0.13" -0.26™ 0.14 -0.23
(0.07) (0.11) (0.11) (0.21)
Date 0.005* 0.01* 0.003 0.01*
(0.002) (0.002) (0.003) (0.004)
Pre-policy Mean 620.35 18.40 14.70 1.83
Observations 4,677 5,082 2,698 2,934

Notes: This table presents the second-stage augmented local linear RDD estimation of the effect of the
California at-berth regulation on air pollutant concentrations. The second-stage RDD dependent variable is
taken from the residuals by regressing log pollution concentrations on weather controls (i.e., the quadratics
of maximum, minimum, and dew point temperature, precipitation, wind speed, and relative wind direction
between a monitor-port pair), fixed effects (i.e., county-by-year, month, day-of-week, holiday, and port-
monitor pair), and log vessel tonnage (instrumented by seven-day lagged and 500-mile distant cyclones
from ports). The local linear bandwidth is specified as 60 days on both sides of the policy threshold. An
observation is a monitor-port-day. Standard errors are clustered by monitor-port pair and normalized day.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.

Table 7: Effect of California Ocean-Going Vessel At-Berth Regulation on annual hospital
visits and medical costs

All All All
Respiratory Heart Psychiatric
(1) 2) 3)

Panel A: Hospital visits per million residents

Black -4,300 -980 -170
White -1,100 -580 -380
Overall Population -1,400 -510 -340
Panel B: Medical costs per capita (2017 USD)

Black -37 -9 -2
White -10 -6 -3
Overall Population -12 -5 -3

Notes: Panel A presents the back-of-the-envelope calculations of the effect of the California at-berth regulation
on annual hospital visits based on the estimates in Tables 3 and 6. Panel B presents the medical costs associated
with the hospital visits in Panel A based on the payment data from Centers for Medicare and Medicaid Services.
The average medical costs are $8,917 for psychiatric illnesses, $8,715 for respiratory illnesses, and $9,679 for
heart-related illnesses. Based on the US 2010 Decennial Census, total population residing in the zip codes within
25 miles of the major ports in California is 15.08 million, in which 1.12 million are Black and 5.07 million are
White. All numbers are rounded to two significant figures.
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Figure 1: (a) Locations of major ports and tracks of tropical cyclones. (b) Illustrative
shipping routes and a tropical cyclone track.

Notes: Panel (a) plots the locations of major ports (red diamonds) in the United States and the tracks of tropical
cyclones (colored dots) in the Northeast and North Central Pacific Ocean and the Atlantic Ocean in 2016. The
gray X dots indicate the cyclone observations within 500 miles of ports or on land. Panel (b) plots two shipping
routes to US ports and the track of Hurricane Leslie in 2012. The solid lines indicate the distorted routes
in response to the cyclone, while the dashed lines represent the normal routes. The grey dots and round
represent Hurricane Leslie. The hurricane data are obtained from the NOAA National Hurricane Center,
and the shipping routes are approximated based on data from the online tool: https://www.shipmap.org.
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Figure 2: (a) Distribution of population by distance to major ports. (b) Distribution of the
population in port areas by percentile of PM; 5 concentration. (c) Distribution of annual
hospital visit rates in port areas.

Notes: Panel (a) plots the share of the population in the California port areas by the distance between census
tract and port for non-Hispanic Black and White populations. Population data are at the census tract level
and assigned a distance between the centroid of the census tract and the nearest mapped port. Panel (b) plots
the share of the population in the California port areas by percentile of PM; 5 concentration, separately for
non-Hispanic Black and White population. Larger pollution percentiles represent higher pollution exposures.
The data are from 2010 Decennial Census and US EPA Air Quality System. Panel (c) plots the density of
annual hospital visit rates separately for the non-Hispanic Black and White populations in the areas within
0-12.5 miles from ports and 12.5-25 miles from ports in California. The hospital visit rate is calculated as the
annual total hospital visits related to psychiatric, respiratory, and heart-related illnesses in each zip code for
2010-2016. The dashed lines represent sample means. The gap between the dashed lines in the left panel is
88, while the gap in the right panel is 75. We exclude zip codes having less than 1,000 people of either race.
The data are from the Office of Statewide Health Planning and Development of California.
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Density

Notes: This figure presents the density of weather measures in the US port areas, separately for the
month-days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and the
same month-days when there are no such cyclones. The dashed lines represent the means of the distributions.
We do not plot the observations with precipitation greater than 50. The data are obtained from the NOAA
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Figure 3: Distribution of local weather in port areas.
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Figure 4: Effects of pollution on hospital visit rates by pollution percentile.

Notes: This figure plots effects of pollution on total hospital visit rates (related to respiratory, heart, and
psychiatric illnesses) in eight PM» 5 pollution percentile groups. Pollution concentrations in regressions
are from the EPA monitoring data, standardized to their means and standard deviations, and they are
instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. Error bars
correspond to 95% confidence intervals, where standard errors from regressions are clustered by port-zip
code and day. An observation is a zip code-port-day.
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Figure 5: Effects of pollution on hospital visit rates by race and characteristics.

Notes: This figure plots effects of pollution on total hospital visit rates (related to respiratory, heart, and
psychiatric illnesses) in for both Blacks (solid lines) and Whites (dotted lines) for each of four important
zip code-level characteristics and four pollutants. The yellow lines show the effects for zip codes with
above-median characteristics (i.e., higher income, better health coverage, higher education, lower poverty)
and the blue lines show the effects for those with below-median characteristics.
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Figure 6: Residuals of NO, concentrations for the RDD analysis.

Notes: This figure plots daily average residuals across all monitor-port pairs for NO,. The grey solid lines
are linear fitted lines of the residuals. The policy date is normalized to be zero, indicated by the vertical
dotted lines. A few extreme values are not shown in the figure.
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A Supplementary Tables (For Online Publication)

Table A.1: Summary statistics of the major ports in United States

Vessel Tonnage (100,000 Mt) Vessel Counts
Mean SD Min Max Mean SD Min Max
Houston, TX 12.4 3.4 1.34 35.9 53.9 12.2 8.00 157.0
Long Beach, CA 9.8 3.4 0.00 24.7 18.7 5.8 0.00 55.0
New York, NY and NJ 8.2 2.8 0.41 49.3 21.0 7.2 1.00 142.0
Los Angeles, CA 7.4 3.0 0.00 26.1 15.3 5.6 0.00 49.0
South Louisiana, LA, Port of 7.2 2.7 0.98 17.9 22.7 7.2 4.00 51.0
New Orleans, LA 49 15 0.29 11.7 194 5.7 2.00 46.0
Baltimore, MD 49 2.1 0.09 15.6 12.9 4.3 1.00 50.0
Savannah, GA 3.9 1.7 0.00 12.1 10.5 3.5 0.00 29.0
Oakland, CA 3.7 1.9 0.00 23.5 6.9 3.5 0.00 53.0
Seattle, WA 3.5 15 0.24 10.6 24.4 5.1 1.00 46.0
Miami, FL 3.5 1.9 0.11 10.7 24.4 7.2 5.00 57.0
Port Everglades, FL 3.3 2.2 0.04 14.4 17.7 4.4 4.00 40.0
Charleston, SC 3.2 1.2 0.00 9.1 8.4 2.9 0.00 26.0
Tacoma, WA 2.9 1.5 0.04 13.7 14.4 45 1.00 34.0
Beaumont, TX 2.7 1.2 0.00 7.7 7.3 2.9 0.00 20.0
Mobile, AL 2.7 1.0 0.06 7.2 12.2 3.9 1.00 31.0
Jacksonville, FL 2.2 1.0 0.00 7.6 8.1 3.0 0.00 23.0
Portland, OR 1.8 1.0 0.00 7.0 7.7 3.9 0.00 29.0
Tampa, FL 1.6 0.8 0.00 6.1 7.6 3.3 0.00 30.0
Philadelphia, PA 1.6 1.0 0.00 6.2 3.7 2.1 0.00 21.0
Baton Rouge, LA 1.5 0.8 0.00 6.1 5.3 2.5 0.00 17.0
Galveston, TX 1.5 1.0 0.00 7.1 10.9 4.7 0.00 31.0
Lake Charles, LA 1.4 0.7 0.00 4.3 7.7 3.4 0.00 23.0
San Diego, CA 0.8 0.7 0.00 6.0 4.3 2.4 0.00 15.0
Port Hueneme, CA 0.5 0.4 0.00 2.4 1.7 1.3 0.00 6.0
Palm Beach, FL 0.3 0.2 0.00 3.0 6.2 3.3 0.00 19.0
San Francisco, CA 0.3 0.5 0.00 3.9 0.7 1.1 0.00 11.0

Notes: This table presents the summary statistics of daily vessel tonnage and daily mean vessel counts
for the 27 major ports in the United States. The data are obtained from the US Army Corps of Engineers.
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Table A.2: ICD-9-CM, ICD-10-CM, and MS-DRG codes

ICD-9 Code ICD-10 Code MS-DRG Code
Panel A: Respiratory
Asthma 493 J45 202,203
Upper Respiratory 460-465 JOO-JOo6 011-013, 152, 153
011-013, 152-156, 177-182,
All Respiratory 460-519 J00-J99 186-206, 793, 865, 866,
919-921, 928, 929, 951
Panel B: Heart
175, 176, 222-227, 280-285,
All Heart 410-429 120-152 288-293, 296-298, 302, 303,
306-311, 314-316, 793
Panel C: Psychiatric
Anxiety 300.0, 300.2 F40, F41 880, 882
300.0, 300.2, 296.0,
296.4-296.9, 309.0,
309.2-309.4, 295, 308.9,
309.8, 314.0, 314.2, 314.9, F43.2, F43.8, F43.9, F20,
312.0-312.2, 312.8, 312.9,
313.8 2990 299.8 3123 F22-F25, F28, F29, F43.0,
All Psychiatric ' man mar oo o F43.1,F90, F91, F84.0, 880-886
307.9, 311, 296.2, 296.3,
F84.5, F84.8, F63, F32,
296.8, 296.9, 298.0, 300.4, F33 F34.0. F34 1. F60
625.4, 301.10, 301.12, A
301.13, 301.0, 301.3,
301.4, 301.6-301.9, 301.50,
301.59
Panel D: Placebo
Arterial Embolism 444 174
Appendicitis 540-543 K35-K38

Notes: Table presents the ICD-9-CM, and ICD-10-CM codes for counting hospital visits for the illness
groups examined in the paper and the corresponding MS-DRG code for calculating average medical
costs for each illness group. The codes include the ranges of themselves and any subcategories. We do
not calculate medical costs for the placebo diseases.
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Table A.3: Supplementary summary statistics of variables

Within 25 Miles of US Ports Within 25 Miles of CA Ports
Mean SD Min Max Mean SD Min Max

Panel A: Pollution

CO Max (ppb) 839.9 730.3 0.0 49000.0 921.1 854.2 0.0 49000.0
NO; Max (ppb) 25.7 15.9 0.0 417.0 29.1 17.0 0.0 270.0
PM, 5 Max (ug/m3) 11.7 7.5 0.0 265.9 13.5 8.5 0.0 239.2
SO, Max (ppb) 5.5 9.5 0.0 462.1 3.0 3.4 0.0 144.2
O3 Mean (ppb) 26.6 11.6 0.0 100.7 25.5 11.2 0.0 84.8
O3z Max (ppb) 37.0 14.5 0.0 144.0 35.7 13.2 0.0 114.0

Panel B: Hospital visits per million residents — Placebo illnesses

Arterial Embolism . . . . 0.7 52 0.0 297.5
Appendicitis . . . . 4.0 12.7 0.0 431.8

Notes: This table presents supplementary summary statistics for pollution and placebo illness variables,
including mean, standard deviation, minimum, and maximum. The data are obtained from the US
EPA Air Quality System and the Office of Statewide Health Planning and Development of California.

Table A.4: Summary statistics of hospital visit rate for Hispanics

Mean SD Min Max
Asthma 53.5 101.1 0.0 2806.4
Upper Respiratory 51.3 93.0 0.0 3089.1
All Respiratory 184.7 211.2 0.0 8917.6
All Heart 71.1 118.6 0.0 2900.7
Anxiety 36.5 83.2 0.0 1870.9
All Psychiatric 96.6 162.1 0.0 3663.0

Notes: This table presents summary statistics of hospital visit rates (i.e., hospital visits per mil-
lion residents) for Hispanics, including mean, standard deviation, minimum, and maximum.
The data are obtained Office of Statewide Health Planning and Development of California.
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Table A.5: Summary statistics of hospital visit rate by age group

Mean SD Min Max
Panel A: Ages 5 and under
Asthma 75.4 189.3 0.0 4635.0
Upper Respiratory 251.5 364.6 0.0 5867.6
All Respiratory 491.3 597.6 0.0 11973.7
All Heart 8.0 60.9 0.0 1988.1
Anxiety 0.6 16.8 0.0 983.3
All Psychiatric 53 49.7 0.0 2320.2
Panel B: Ages between 5 and 19
Asthma 58.0 118.7 0.0 4779.8
Upper Respiratory 50.8 110.1 0.0 4490.2
All Respiratory 150.2 223.4 0.0 13035.9
All Heart 4.6 33.3 0.0 1938.0
Anxiety 13.0 56.5 0.0 1938.0
All Psychiatric 53.5 131.0 0.0 3876.0
Panel C: Ages between 20 and 64
Asthma 59.8 72.8 0.0 3310.1
Upper Respiratory 24.6 43.2 0.0 4280.3
All Respiratory 159.2 144.5 0.0 13640.0
All Heart 70.8 74.1 0.0 1416.4
Anxiety 50.1 60.3 0.0 1045.2
All Psychiatric 147.3 133.3 0.0 2351.7
Panel D: Ages 65 and above
Asthma 123.2 202.7 0.0 3791.5
Upper Respiratory 18.7 77.2 0.0 2521.0
All Respiratory 577.3 490.6 0.0 11764.7
All Heart 776.8 527.7 0.0 7582.9
Anxiety 94.9 174.5 0.0 3731.3
All Psychiatric 282.9 344.1 0.0 6529.9

Notes: This table presents summary statistics of hospital visit rates (i.e., hospital visits per million
residents) by age group, including mean, standard deviation, minimum, and maximum. The data

are obtained Office of Statewide Health Planning and Development of California.
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Table A.6: Summary statistics of hospital visit rate by sex group

Mean SD Min Max

Panel A: Female

Asthma 81.4 92.7 0.0 3621.2
Upper Respiratory 45.1 66.0 0.0 4782.7
All Respiratory 243.3 190.9 0.0 14006.6
All Heart 129.3 112.1 0.0 1642.6
Anxiety 57.6 71.8 0.0 1314.1
All Psychiatric 160.6 147.7 0.0 2956.6
Panel B: Male

Asthma 54.2 72.3 0.0 3523.3
Upper Respiratory 40.5 61.1 0.0 3252.3
All Respiratory 210.9 168.5 0.0 11518.4
All Heart 151.4 129.0 0.0 2088.6
Anxiety 32.7 53.8 0.0 1135.1
All Psychiatric 113.7 125.4 0.0 2684.0

Notes: This table presents summary statistics of hospital visit rates (i.e., hospital visits per million
residents) by sex group, including mean, standard deviation, minimum, and maximum. The data
are obtained Office of Statewide Health Planning and Development of California.
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Table A.7: Summary statistics of hospital visit rate by data specification

Overall Population Black White
Mean SD Min Max Mean SD Min Max Mean SD Min Max

Panel A: Principal Diagnosis

All Respiratory 88.6 776 0.0 6089.5 200.8 2999 0.0 8496.3 954 161.5 0.0 5639.1
All Heart 321 385 0.0 7290 5151406 0.0 2952.8 51.1 105.1 0.0 3439.4
All Psychiatric 294 407 0.0 9993 7591915 0.0 3787.9 52.0 139.3 0.0 5639.1

Panel B: Patient Discharge Data (PDD)

All Respiratory 79.6 67.7 0.0 26521 1609 281.1 0.0 5703.4 130.7 205.5 0.0 5988.0
All Heart 775 62.0 0.0 12314 135.8 232.8 0.0 4296.5 130.0 1834 0.0 42614
All Psychiatric 59.5 61.1 0.0 1142.0 112.8 240.8 0.0 5581.4 118.0 2059 0.0 6578.9

Panel C: Emergency Department Data (EDD)

All Respiratory ~ 130.4 115.2 0.0 12519.1 345.4 441.7 0.0 16672.0 137.4 209.6 0.0 7518.8
All Heart 46.2 50.0 0.0 7915 899 187.6 0.0 37383 73.6 1219 0.0 3759.4
All Psychiatric 68.5 71.8 0.0 1190.1 150.7 287.2 0.0 5401.2 112.7 198.7 0.0 6986.0

Panel D: Ambulatory Surgery Center Data (ASCD)

All Respiratory 170 311 00 78.2 212 996 0.0 37383 259 735 0.0 2851.7
All Heart 164 297 00 6919 150 771 0.0 19940 277 724 0.0 1996.0
All Psychiatric 9.6 237 0.0 6919 9.5 693 0.0 29528 17.0 619 0.0 2991.8

Notes: Table presents summary statistics of hospital visit rate in various data specifications, including
mean, standard deviation, minimum, and maximum. Panels A-C show statistics for different OSHPD
data sets. Panel D presents the statistics by only counting principal diagnoses (i.e., secondary diagnoses
are excluded). The data are obtained Office of Statewide Health Planning and Development of California.

Table A.8: Average pollution exposure weighted by Black and White population in port
areas

Black White
CO (ppb) 423.12 406.95
NO; (ppb) 15.25 13.68
PM, 5 (ug/m®) 10.55 10.03
SO; (ppb) 0.63 0.60

Notes: This table presents average pollution exposure for Blacks and
Whites for 2010-2016, weighted by the zip code-level Black and White
population. The population data are obtained from US 2010 Decennial
Census. The pollution data are from the US EPA Air Quality System.
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Table A.9: Balance statistics for weather variables in port areas

Standardized Variance Kolmogorov-Smirnov
Mean Differences Ratio Statistics
Wind Speed (m/s) -0.005 1.068 0.016
Wind Direction (degree) -0.009 1.041 0.013
Max Temperature (C) 0.006 0.989 0.009
Min Temperature (C) -0.005 1.000 0.008
Precipitation (mm) -0.011 1.068 0.009
Dew Point Temperature (C) -0.015 0.991 0.014

Notes: This table presents the balance statistics of weather variables in the US port areas, separately for the
month-days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and the
same month-days when there are no such cyclones. Balanced sub-samples indicate that standardized mean
differences are close to zero, variance ratios are close to one, and Kolmogorov-Smirnov (KS) statistics are close
to zero. The data are obtained from the NOAA Integrated Surface Database.

Table A.10: First-stage relationship between tropical cyclones and port traffic

Dependent variable: port traffic

Vessel Tonnage Vessel Counts

1) () ©) (4) (5) (6) ) (8)

Tropical Cyclone ~ —0.24"  —0.22%  —0.22%*  —020"  —053"  —047*  —048"  —0.44"
(0.05) (0.04) (0.05) (0.04) (0.13) (0.10) (0.13) (0.11)

AR stat. p-val 0.070 0.000 0.019 0.219 0.070 0.000 0.019 0.219
SW S stat. p-val 0.060 0.000 0.017 0.164 0.060 0.000 0.017 0.164
Observations 524,197 604,632 428,220 484,745 524,197 604,632 428,220 484,745

Notes: This table presents the first-stage results for the instrumental variable estimation in Panel A of Table
2. Each entry corresponds to an individual regression. The instrument is an indicator of seven-day lagged
and 500-mile distant cyclones in the ocean. All regressions include weather controls, such as the quadratics of
maximum temperature, minimum temperature, dew point temperature, precipitation, wind speed, and relative
wind direction between a monitor-port pair. All regressions also include county-by-year, month, day-of-week,
holiday, and monitor-port pair fixed effects. An observation is a monitor-port-day. Standard errors are clustered
by monitor-port pair and day. AR refers to Anderson-Rubin Wald statistic and SW refers to the Stock and
Wright LM S statistic. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.11: Effect of vessel tonnage on air pollutant concentrations around California ports

Dependent variable: pollutant concentration

co NO; PM; 5 50, CcO NO; PM;5 50,
) @) 3) 4) ©) (6) @) (8)
Vessel Tonnage 16.96 1.47* 0.29 -0.02
(24.87) (0.60) 0.93) (0.17)
Vessel Counts 10.25 0.91" 0.19 -0.01
(15.11) (0.38) 0.61) (0.06)
1st-Stage F Stat. 19.16 17.96 14.31 15.31 14.97 14.12 12.04 13.28
Adjusted R? 0.52 0.72 0.42 0.46 0.52 0.71 0.41 0.46
Observations 230,582 247,672 115,797 151,808 230,582 247,672 115,797 151,808

Notes: This table presents the instrumental variable estimates of the effect of vessel tonnage on pollutant
concentrations within a 25-mile radius of ports in California. Each entry presents an individual regression on
a local air pollutant. The endogenous variable, vessel tonnage, is instrumented by an indicator of seven-day
lagged cyclones that are at least 500-mile distant from ports. All regressions include weather controls, such as
the quadratics of maximum, minimum, and dew point temperature, precipitation, wind speed, and relative
wind direction between a monitor-port pair. All regressions also include county-by-year, month, day-of-week,
holiday, and monitor-port fixed effects. An observation is a monitor-port-day. Standard errors are clustered
by monitor-port pair and day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.12: Effect of vessels in ports on air pollutant concentrations in the United States,
split by years

Dependent variable: pollutant concentration

CcO NO; PM; 5 SO,
1) @) (3) 4
Panel A: 2001-2005
Vessel Tonnage 31.38° 0.92" -0.27 0.40™
(16.92) (0.37) (0.73) (0.18)
Adjusted R? 0.55 0.74 0.38 0.41
Observations 198,912 191,955 129,683 164,056
Panel B: 2006-2016
Vessel Tonnage 32.86 1.97 3.47° -0.13
(25.82) (0.73) (1.26) (0.20)
Adjusted R? 0.39 0.60 -0.62 0.36
Observations 325,285 412,677 298,537 320,689

Notes: Panel A presents the IV estimates of the effect of vessel tonnage on pollutant concentrations
within a 25-mile radius of ports in the United States from 2001 to 2005. Panel B presents the corre-
sponding estimates from 2006 to 2016. Each entry presents an individual regression on a local air
pollutant. The endogenous variables, vessel tonnage, are instrumented by an indicator of seven-day
lagged cyclones at least 500-mile distant from ports. All regressions include weather controls, such
as the quadratics of maximum, minimum, and dew point temperature, precipitation, wind speed,
and relative wind direction between a monitor-port pair. All regressions also include county-by-year,
month, day-of-week, holiday, and monitor-port fixed effects. An observation is a monitor-port-day.
Standard errors are clustered by monitor-port pair and day. The first-stage F statistics range from 11 to
21. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.13: 2SLS estimation of the effect of vessels in port on ozone pollution

Dependent variable: pollutant concentration

(1) (2)
Vessel Tonnage -1.19

(0.78)
Vessel Counts -0.55

(0.38)

1st-Stage F Stat. 36.10 19.60
Adjusted R? 0.38 0.37
Observations 848,889 848,889

Notes: Panel A presents the OLS estimates of the effect of port traffic on O3 concentrations within a 25-mile
radius of ports in the United States. Panel B presents the IV estimates of the effect of port traffic on O3 concen-
trations within a 25-mile radius of ports in the United States. Each entry presents an individual regression on a
local air pollutant. The endogenous variables, vessel tonnage and the number of vessels, are instrumented by
an indicator of seven-day lagged cyclones that are at least 500-mile distant from ports. All regressions include
weather controls, such as the quadratics of maximum, minimum, and dew point temperature, precipitation,
wind speed, and relative wind direction between a monitor-port pair. All regressions also include county-
by-year, month, day-of-week, holiday, and monitor-port fixed effects. An observation is a monitor-port-day.
Standard errors are clustered by monitor-port pair and day. The first-stage F statistics for column (1) is 36 and
for column (2) is 20. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.14: Effect of air pollution on hospital visit rates for the overall population in

California port areas, instrumental variable estimation

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1 ) ®3) 4) ®) (6)
Panel A: CO
CO 2.79" 3.09"* 10.46™ 3.16™ 0.69" 1.87*
(0.41) (0.64) (1.74) (0.63) (0.27) (0.65)
Adjusted R? 0.39 0.34 0.47 0.35 0.22 0.40
1st-Stage F Stat. 56.44 56.44 56.44 56.44 56.44 56.44
AR Stat. P-val 3.99¢-10 3.99¢-10 3.99¢-10 3.99¢-10 3.99¢-10 3.99¢-10
SW S Stat. P-val 5.16e-06 5.16e-06 5.16e-06 5.16e-06 5.16e-06 5.16e-06
Observations 1,776,040 1,776,040 1,776,040 1,776,040 1,776,040 1,776,040
Panel B: NO,
NO, 2.39" 2,91 8.79 3.09" 0.71 1.94*
(0.38) (0.61) (1.61) (0.58) (0.25) (0.61)
Adjusted R? 0.39 0.34 0.47 0.35 0.22 0.40
1st-Stage F Stat. 78.84 78.84 78.84 78.84 78.84 78.84
AR Stat. P-val 3.02e-09 3.02e-09 3.02e-09 3.02e-09 3.02e-09 3.02e-09
SW S Stat. P-val 1.58e-05 1.58e-05 1.58e-05 1.58e-05 1.58e-05 1.58e-05
Observations 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287
Panel C: PM, 5
PM, 5 1.84* 2.21™ 6.73™ 2.19™ 0.50" 1.33*
(0.32) (0.51) (1.37) (0.49) (0.21) (0.50)
Adjusted R? 0.39 0.34 0.47 0.35 0.22 0.40
1st-Stage F Stat. 27.67 27.67 27.67 27.67 27.67 27.67
AR Stat. P-val 5.36e-09 5.36e-09 5.36e-09 5.36e-09 5.36e-09 5.36e-09
SW S Stat. P-val 2.07e-05 2.07e-05 2.07e-05 2.07e-05 2.07e-05 2.07e-05
Observations 1,714,554 1,714,554 1,714,554 1,714,554 1,714,554 1,714,554
Panel D: SO,
SO, 3.28"* 4.68™ 13.13* 4.40* 1.19* 3.08"™*
(0.63) (0.97) (2.57) (0.93) (0.40) (0.96)
Adjusted R? 0.39 0.33 0.47 0.35 0.22 0.40
1st-Stage F Stat. 32.73 32.73 32.73 32.73 32.73 32.73
AR Stat. P-val 5.16e-10 5.16e-10 5.16e-10 5.16e-10 5.16e-10 5.16e-10
SW S Stat. P-val 6.40e-06 6.40e-06 6.40e-06 6.40e-06 6.40e-06 6.40e-06
Observations 1,742,012 1,742,012 1,742,012 1,742,012 1,742,012 1,742,012

Notes: This table presents the detailed results of Panel A in Table 3. Each entry presents an individual regression
of an air pollutant on an illness category. Pollution concentrations are standardized to their means and standard
deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their
interactions. All regressions include weather controls, such as the quadratics of maximum, minimum, and dew
point temperature, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday,
and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by
zip code-port pair and day. Estimates are weighted by the zip code-specific population. Significance levels are
indicated by *** 1%, ** 5%, and * 10%.
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Table A.15: Effect of air pollution on hospital visit rates for Blacks in California port areas,
instrumental variable estimation

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
@® @ ®) ) ®) (6)
Panel A: CO
cO 7.81" 5.38" 20.44™ 5.74 0.92 —-0.04
(1.63) (1.43) (4.04) (1.79) (0.81) (1.88)
Adjusted R? 0.17 0.10 0.23 0.13 0.05 0.19
1st-Stage F Stat. 46.35 46.35 46.35 46.35 46.35 46.35
AR Stat. P-val 0 0 0 0 0 0
SW S Stat. P-val 0.000361 0.000361 0.000361 0.000361 0.000361 0.000361
Observations 877,072 877,072 877,072 877,072 877,072 877,072
Panel B: NO,
NO, 7.18™ 8.77° 23.32" 5.95" 1.23 0.66
(1.68) (1.48) (4.23) (1.85) (0.85) (1.96)
Adjusted R? 0.17 0.10 0.23 0.13 0.05 0.19
1st-Stage F Stat. 61.44 61.44 61.44 61.44 61.44 61.44
AR Stat. P-val 0 0 0 0 0 0
SW S Stat. P-val 0.000338 0.000338 0.000338 0.000338 0.000338 0.000338
Observations 887,300 887,300 887,300 887,300 887,300 887,300
Panel C: PM; 5
PM;5 5.66™ 6.28™ 18.00™ 3.77 0.38 -0.53
(1.28) (1.13) (3.29) (1.41) (0.60) (1.45)
Adjusted R? 0.17 0.10 0.23 0.13 0.05 0.19
1st-Stage F Stat. 23.52 23.52 23.52 23.52 23.52 23.52
AR Stat. P-val 3.32e-10 3.32e-10 3.32e-10 3.32e-10 3.32e-10 3.32e-10
SW S Stat. P-val 0.000549 0.000549 0.000549 0.000549 0.000549 0.000549
Observations 846,980 846,980 846,980 846,980 846,980 846,980
Panel D: SO,
SO, 10.87* 16.35™ 39.10 8.23" 1.93 1.54
(2.54) (2.41) (6.65) (2.88) (1.35) (3.07)
Adjusted R? 0.17 0.10 0.23 0.13 0.05 0.19
1st-Stage F Stat. 21.09 21.09 21.09 21.09 21.09 21.09
AR Stat. P-val 0 0 0 0 0 0
SW S Stat. P-val 0.000292 0.000292 0.000292 0.000292 0.000292 0.000292
Observations 871,296 871,296 871,296 871,296 871,296 871,296

Notes: This table presents the detailed results of Panel B in Table 3. Each entry presents an individual regression of an
air pollutant on an illness category. Pollution concentrations are standardized to their means and standard deviations,
and they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All
regressions include weather controls, such as the quadratics of maximum, minimum, and dew point temperature, and
precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates
are weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.16: Effect of air pollution on hospital visit rates for Whites in California port areas,
instrumental variable estimation

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
O] 2 (©) (4) ©) (6)

Panel A: CO
cO 241 2.10™ 9.55"* 4.02 0.11 2.38*

(0.51) (0.41) (1.56) (1.16) (0.54) (1.25)
Adjusted R? 0.17 0.09 0.34 0.28 0.15 0.32
1st-Stage F Stat. 58.31 58.31 58.31 58.31 58.31 58.31
AR Stat. P-val 8.13e-10 8.13e-10 8.13e-10 8.13e-10 8.13e-10 8.13e-10
SW S Stat. P-val 8.72e-06 8.72e-06 8.72e-06 8.72e-06 8.72e-06 8.72e-06
Observations 1,650,747 1,650,747 1,650,747 1,650,747 1,650,747 1,650,747
Panel B: NO,
NO; 1.78™ 1.80" 6.84" 3.51 0.22 2.32*

(0.46) (0.40) (1.42) (1.01) (0.48) (1.12)
Adjusted R? 0.17 0.09 0.34 0.28 0.15 0.32
1st-Stage F Stat. 83.18 83.18 83.18 83.18 83.18 83.18
AR Stat. P-val 1.84e-08 1.84e-08 1.84e-08 1.84e-08 1.84e-08 1.84e-08
SW S Stat. P-val 2.95e-05 2.95e-05 2.95e-05 2.95e-05 2.95e-05 2.95e-05
Observations 1,679,994 1,679,994 1,679,994 1,679,994 1,679,994 1,679,994
Panel C: PM, 5
PM;5 1.53 1.51™ 5.55"* 2.78™* 0.16 1.82°

(0.41) (0.35) (1.29) (0.91) (0.43) (0.99)
Adjusted R? 0.17 0.09 0.34 0.28 0.15 0.32
1st-Stage F Stat. 27.30 27.30 27.30 27.30 27.30 27.30
AR Stat. P-val 2.31e-08 2.31e-08 2.31e-08 2.31e-08 2.31e-08 2.31e-08
SW S Stat. P-val 4.14e-05 4.14e-05 4.14e-05 4.14e-05 4.14e-05 4.14e-05
Observations 1,598,695 1,598,695 1,598,695 1,598,695 1,598,695 1,598,695
Panel D: SO,
SO, 2.05 2.63™ 8.98 4.64™ 0.35 3.35*

(0.69) (0.58) (2.10) (1.49) (0.70) (1.63)
Adjusted R? 0.17 0.09 0.33 0.28 0.15 0.32
1st-Stage F Stat. 38.52 38.52 38.52 38.52 38.52 38.52
AR Stat. P-val 9.80e-10 9.80e-10 9.80e-10 9.80e-10 9.80e-10 9.80e-10
SW S Stat. P-val 8.90e-06 8.90e-06 8.90e-06 8.90e-06 8.90e-06 8.90e-06
Observations 1,616,890 1,616,890 1,616,890 1,616,890 1,616,890 1,616,890

Notes: This table presents the detailed results of Panel C in Table 3. Each entry presents an individual regression of an
air pollutant on an illness category. Pollution concentrations are standardized to their means and standard deviations,
and they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All
regressions include weather controls, such as the quadratics of maximum, minimum, and dew point temperature, and
precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.17: OLS estimates of the effect of air pollution on hospital visit rates in California
port areas

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1) ) ©) (4) (©) (6)
Panel A: Overall population
CO 0.63™ 0.24 2.06™ 1.20™* 0.09 0.25
(0.19) (0.23) (0.76) (0.30) (0.09) (0.23)
NO, 1.36™ -0.11 3.94 3.18™ 0.66™ 2.05™
(0.24) (0.37) (0.98) (0.44) (0.16) (0.44)
PM; 5 0.49™ 0.32* 1.39" -0.07 0.06 0.07
(0.12) (0.18) (0.50) (0.24) (0.09) (0.23)
SO, 0.47* —0.43" —-0.55 0.35" 0.09 0.27
(0.13) (0.16) (0.45) (0.17) (0.08) (0.19)
Panel B: Black
CcO 2.41™ -0.17 5.00™ 2.59™ 0.58" 1.52*
(0.70) (0.54) (1.72) (0.74) (0.28) (0.74)
NO, 4.13™ 0.65 11.12™ 5.06™ 1.50" 4.20™
(1.02) (0.91) (2.65) (1.17) (0.43) (1.16)
PM;5 1.70™ —-0.08 2.33" 0.34 0.28 0.01
(0.54) (0.45) (1.35) (0.59) (0.22) (0.58)
50, 2.63™ —-0.10 2.36 0.81 -0.03 0.64
(0.70) (0.56) (1.64) (0.59) (0.26) (0.67)
Panel C: White
CcO 0.74™ -0.08 2.55" 217 0.19 0.64
(0.23) (0.13) (0.77) (0.50) 0.17) (0.43)
NO; 2.09" -0.30 6.87" 6.51™ 1.50" 4.84™
(0.29) (0.23) (0.90) (0.72) (0.28) (0.73)
PM;5 0.31* 0.02 0.68 -0.17 0.01 0.14
(0.15) (0.17) (0.44) (0.38) (0.16) (0.38)
S50, 0.49 —-0.29" -0.09 0.53" -0.12 0.02
(0.15) (0.10) (0.38) (0.31) (0.15) (0.33)

Notes: This table presents the OLS estimation of the effect of air pollution on hospital visit rates for the
overall population, Blacks, and Whites. Each entry presents an individual regression of an air pollutant
on an illness category. Pollution concentrations are standardized to their means and standard deviations.
All regressions include weather controls, such as the quadratics of maximum temperature, minimum
temperature, dew point temperature, precipitation, wind speed, and relative wind direction between a
zip code-port pair. All regressions also include county-by-year, month, day-of-week, holiday, and zip
code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip
code-port pair and day. Estimates are weighted by the zip code-specific population. Significance levels
are indicated by *** 1%, ** 5%, and * 10%.
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Table A.18: Elasticities of the effect of pollution on hospital visit rates for Blacks and Whites
in California port areas

Dependent variable: IHS transformation of hospital visit rates

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1) 2) 3) 4) ®) (6)
Panel A: Black
CcO 0.103* 0.224** 0.091* 0.124* 0.068 —-0.003
(0.038) (0.058) (0.026) (0.036) (0.054) (0.042)
NO, 0.016 0.189* 0.038* 0.063* 0.051 0.002
(0.027) (0.040) (0.021) (0.027) (0.039) (0.030)
PM; 5 0.051* 0.174* 0.059* 0.064* 0.032 -0.015
(0.027) (0.041) (0.020) (0.026) (0.038) (0.030)
SO, 0.185* 0.531** 0.184* 0.248* 0.209* 0.010
(0.075) (0.112) (0.054) (0.075) (0.113) (0.082)
Panel B: White
CcO 0.125* 0.141* 0.083** 0.084* 0.005 0.056*
(0.033) (0.037) (0.023) (0.024) (0.035) (0.028)
NO, 0.037* 0.112* 0.039* 0.049* 0.017 0.034*
(0.021) (0.027) (0.015) (0.015) (0.023) (0.018)
PM; 5 0.056* 0.111* 0.043* 0.058* 0.021 0.044*
(0.024) (0.030) (0.017) (0.017) (0.025) (0.020)
SO, 0.191* 0.281** 0.145* 0.153* 0.021 0.099*
(0.063) (0.074) (0.045) (0.044) (0.065) (0.052)

Notes: This table presents the instrumental variable estimation of elasticities of the effect of pollution
on hospital visit rates for Blacks and Whites in California port areas. Each entry presents an individual
regression of an air pollutant on an illness category. The dependent variables and pollution measures are
IHS transformed. The instruments include fitted vessel tonnage in ports, wind direction, wind speed,
and their interactions. All regressions include weather controls, such as the quadratics of maximum,
minimum, and dew point temperature, and precipitation. All regressions also include county-by-year,
month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day.
Standard errors are clustered by zip code-port pair and day. The first-stage F statistics range from 20 to 91
for Panel A and from 31 to 103 for Panel B. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.

67



Table A.19: Test for differences of hospital visit rates of Blacks and Whites in California

port areas
Respiratory Heart Psychiatric
Upper All All . All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1) @) ®) ) ®) (6)
CcO 5.40™ 3.29™ 10.88™ 1.73 0.81 -2.43
[3.15] [2.21] [2.51] [0.81] [0.83] [-1.08]
NO, 5.41™ 6.97" 16.48™ 2.44 1.01 -1.66
[3.10] [4.55] [3.69] [1.16] [1.04] [-0.73]
PM;5 4.13™ 477 12.45™ 0.98 0.22 -2.35
[3.08] [4.04] [3.52] [0.58] [0.29] [-1.34]
SO, 8.83™ 13.727 30.12™ 3.59 1.58 -1.81
[3.35] [5.53] [4.32] [1.11] [1.04] [-0.52]

Notes: This table presents the statistical tests for the equality of regression coefficients for Blacks and Whites
in Panels B and C in Table 3. Pollution concentrations are standardized to their means and standard deviations.
Each entry presents an individual test. The numbers in square brackets are Z-scores. Significance levels are
indicated by *** 1%, ** 5%, and * 10%.

Table A.20: Effect of air pollution on differences of hospital visit rates between Blacks and

Whites in California port areas, instrumental variable estimation

Dependent variable: hospital visit rate for Blacks — hospital visit rate for whites

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

1) (2) 3) ) ®) (6)
CcO 6.75™ 5.65™ 11.50™ -0.93 -0.26 —-6.20
(2.47) (1.83) (5.09) (3.09) (1.88) (4.01)
NO, 6.62" 9.13™ 17.65™ -0.85 -0.52 -5.14
(2.34) (1.71) (4.90) (2.85) (1.74) (3.67)
PMy 5 5.31™ 6.76™" 14.03 -1.31 -0.39 —4.62
(1.93) (1.45) (4.13) (2.29) (1.40) (3.08)
SO, 10.01™ 14727 29.78™ 0.18 —-0.55 -5.72
(3.26) (2.53) (7.07) (4.00) (2.31) (4.78)

Notes: This table presents the effects of pollution on the differences of hospital visit rates between Blacks
and Whites. Each entry presents an individual regression of an air pollutant on an illness category. Pollution
concentrations are standardized to their means and standard deviations, and they are instrumented by fitted
vessel tonnage in ports, wind direction, wind speed, and their interactions. All regressions include weather
controls, such as the quadratics of maximum, minimum, and dew point temperature, and precipitation. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An
observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates
are weighted by the zip code-specific population. The first-stage F statistics range from 26 to 72. Significance

levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.21: Effect of air pollution on hospital visit rates for Hispanics in California port

areas
Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

1) (2) 3) 4) @) (6)
CcO 221 3.76"* 10.29** 0.79 1.40* 271
(0.55) (0.82) (1.98) (0.66) (0.42) (0.86)
NO; 2,18 416" 9.92* 0.96 1.15* 2.59**
(0.50) (0.78) (1.82) (0.60) (0.38) (0.78)
PM; 5 1.37 3.15™ 6.97" 0.26 1.05"* 1.91*
(0.41) (0.65) (1.52) (0.48) (0.31) (0.65)
SO, 3.07* 7.00"* 15.53 1.47 1.84** 433
(0.85) (1.25) (2.90) (0.95) (0.62) (1.31)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital
visit rates for the Hispanic population. Each entry presents an individual regression of an air pollutant
on an illness category. Pollution concentrations are standardized to their means and standard deviations,
and they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their
interactions. All regressions include weather controls, such as the quadratics of maximum temperature,
minimum temperature, dew point temperature, and precipitation. All regressions also include county-
by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip
code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by
the zip code-specific population. The first-stage F statistics range from 28 to 79. Significance levels are
indicated by *** 1%, ** 5%, and * 10%.
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Table A.22: Effect of air pollution on hospital visit rates in California port areas by age

Dependent variable: hospital visits/million residents in each age group

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1) 2 ©) 4) ©) (6)
Panel A: Ages 5 and under
CcO 297 13.63™ 22,97 0.46* 0.12 0.92
(1.27) (4.46) (8.62) (0.27) (0.09) (0.23)
NO, 3.16™ 14.05™ 20.00* 0.50* 0.10 0.76™*
(1.21) (4.20) (8.07) 0.27) (0.08) (0.21)
PM; 5 227 9.23* 12.52" 0.27 0.08 0.72
(0.96) (3.36) (6.53) (0.20) (0.06) 0.17)
50, 413" 21.71 27.81" 0.72* 0.16 1.07
(2.07) (6.93) (13.25) (0.44) (0.14) (0.36)
Panel B: Ages between 5 and 19
CcO 241 3.59 7.78™ 0.14 -0.10 0.46
(0.71) (1.08) (2.30) (0.11) (0.20) (0.55)
NO, 2.47 3.46™ 6.67 0.18" —-0.03 0.82
0.67) (1.03) (2.17) (0.11) (0.19) (0.52)
PM; 5 1.90* 2.75™ 5.37 0.09 0.05 0.67
(0.54) (0.86) (1.79) (0.09) (0.15) (0.42)
50, 3.52 6.67 11.35™ 0.23 —-0.07 1.55*
(1.13) (1.67) (3.51) (0.18) (0.31) (0.85)
Panel C: Ages between 20 and 64
CcO 2.42™ 1.92" 8.19" 1.42 0.93" 1.44
(0.41) (0.36) (1.24) (0.42) (0.34) (0.74)
NO, 1.94 2.20" 7.35" 1.26™ 0.91 1.50"
(0.37) (0.34) (1.13) (0.39) (0.32) (0.69)
PMy5 1.50" 1.75" 5.76" 0.82 0.66™ 0.97*
(0.31) (0.29) (0.98) (0.32) (0.26) (0.57)
50O, 2.72 3.72 11.36™ 1.80" 1.49™ 2.37"
(0.61) (0.56) (1.87) (0.61) (0.50) (1.10)
Panel D: Ages 65 and above
CcO 4.31™ 0.50 15.80™ 17.87 0.67 5.90
(1.08) (0.51) (4.02) (3.96) (0.96) (2.11)
NO; 4.02" 0.93* 14.51 17.01 0.86 5.94
(0.99) (0.45) (3.57) (3.57) (0.86) (1.89)
PM;5 2.98™ 0.56 11.04™ 12.53 0.40 4.13™
(0.83) (0.38) (3.10) (3.06) 0.71) (1.58)
50, 5.86™ 1.60™ 20.75™ 22.63"™ 1.69 9.33*
(1.56) (0.70) (5.39) (5.52) (1.28) (2.90)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital visit rates by
age. Each entry presents an individual regression of an air pollutant on an illness category. Pollution concentrations
are standardized to their means and standard deviations, and they are instrumented by fitted vessel tonnage in ports,
wind direction, wind speed, and their interactions. All regressions include weather controls, such as the quadratics
of maximum temperature, minimum temperature, dew point temperature, and precipitation. All regressions also
include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-
port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific
population. The first-stage F statistics range from 27 to 79. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.23: Effect of air pollution on hospital visit rates in California port areas by sex

Dependent variable: hospital visits/million residents in each sex group

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
(1) 2) 3) 4) ) (6)
Panel A: Male
CO 2.20" 2.58* 9.09*** 2.77 0.64* 1.72%
(0.40) (0.63) (1.64) (0.76) (0.23) (0.61)
NO, 1.85** 2.35"* 7.56*" 2.80"* 0.59*** 1.85**
(0.37) (0.59) (1.53) (0.70) (0.22) (0.57)
PMy 5 1.43** 1.81 5.76"* 1.78 0.43* 1.18*
(0.31) (0.49) (1.30) (0.57) (0.18) (0.47)
SO, 2.36™ 3.75™ 11.14* 3.66™* 1.00"* 2.79*
(0.62) (0.93) (2.42) (1.12) (0.34) (0.91)
Panel B: Female
CcO 3.37 3.58" 11.79* 3.52%* 0.76* 2.02*
(0.52) (0.71) (1.93) (0.63) (0.40) (0.85)
NO; 2.91* 3.45* 9.98** 3.37** 0.84* 2.04*
(0.49) (0.67) (1.80) (0.59) (0.37) (0.80)
PM; 5 2.24* 2.59 7.68** 2.59** 0.58" 1.50*
(0.40) (0.56) (1.52) (0.50) (0.30) (0.65)
SO, 4.19* 5.59* 15.07* 5.10" 1.39* 3.40*
(0.80) (1.09) (2.89) (0.95) (0.59) (1.26)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital
visit rates by sex. Each entry presents an individual regression of an air pollutant on an illness category.
Pollution concentrations are standardized to their means and standard deviations, and they are instru-
mented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All regres-
sions include weather controls, such as the quadratics of maximum temperature, minimum temperature,
dew point temperature, and precipitation. All regressions also include county-by-year, month, day-of-
week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors
are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
The first-stage F statistics range from 28 to 79. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.24: Effect of air pollution on hospital visit rates of placebo illnesses for the overall

population in California port areas, instrumental variable estimation

Dependent variable: hospital visits/million residents

Arterial
Appendicitis Embolism
1) (2
Panel A: CO
CcO 0.09 0.03
(0.06) (0.02)
Adjusted R? 0.01 0.00
Observations 1,776,040 1,776,040
Panel B: NO,
NO, 0.08 0.02
(0.05) (0.02)
Adjusted R? 0.01 0.00
Observations 1,805,287 1,805,287
Panel C: PM; 5
PM;y 5 0.07 0.02
(0.04) (0.02)
Adjusted R? 0.01 0.00
Observations 1,714,554 1,714,554
Panel D: SO,
SO, 0.14* 0.03
(0.08) (0.03)
Adjusted R? 0.01 0.00
Observations 1,742,012 1,742,012

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital visit
rates for placebo illnesses. Each entry presents an individual regression of an air pollutant on an illness
category. Pollution concentrations are standardized to their means and standard deviations, and they are
instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All re-
gressions include weather controls, such as the quadratics of maximum temperature, minimum temperature,
dew point temperature, and precipitation. All regressions also include county-by-year, month, day-of-week,
holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are
clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population. The
first-stage F statistics range from 28 to 79. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.25: Robustness check for the effect of vessel tonnage in port on air pollution,
various model specifications

Dependent variable: pollutant concentration

CcO NO; PM; 5 SO,
1 2) @3) 4)
Panel A: No weather controls and temporal fixed effects
Vessel Tonnage 2,358.96 120.54 413 37.07
(3,618.78) (263.04) (3.11) (110.60)
Adjusted R? -167.74 -649.67 -1.34 -514.91
Observations 524,197 604,632 428,220 484,745
Panel B: No weather controls
Vessel Tonnage 16.76 0.57 1.15° 0.17
(16.01) (0.43) (0.66) (0.13)
Adjusted R? 0.45 0.61 0.13 0.39
Observations 524,197 604,632 428,220 484,745

Panel C: No temporal fixed effects

Vessel Tonnage 233.52" 9.84* 8.16™ 0.94
(88.98) (4.44) (2.21) (0.73)

Adjusted R? -1.34 -3.79 -5.23 -0.09

Observations 524,197 604,632 428,220 484,745

Panel D: No quadratic weather terms

Vessel Tonnage 18.06 0.98 0.93" 0.05
(13.53) (0.33) (0.56) (0.12)
Adjusted R? 0.53 0.72 0.29 0.42
Observations 524,197 604,632 428,220 484,745
Panel E: Monitors within 12.5 miles of ports
Vessel Tonnage 28.21* 1.04* 1.33* 0.23
(14.67) (0.39) (0.57) (0.17)
Adjusted R? 0.59 0.73 0.29 0.39
Observations 263,877 282,449 232,277 279,891

Notes: This table presents the robustness check results for Table 2 with various model specifications. Each

panel presents regressions using an alternative model specification. Log vessel tonnage is instrumented by
an indicator of seven-day lagged and 500-mile distant cyclones from ports. All regressions include weather
controls, such as the quadratics of maximum temperature, minimum temperature, dew point temperature,
precipitation, wind speed, and relative wind direction between a monitor-port pair. All regressions also
include county-by-year, month, day-of-week, holiday, and monitor-port pair fixed effects. Standard errors
are clustered by monitor-port pair and day. The first-stage F statistics for Panel A is 0.1-3, for Panel B is
21-35, for Panel C is 6-16, for Panel D is 22-36, and for Panel E is 20-25. Significance levels are indicated by
*** 1%, ** 5%, and * 10%.
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Table A.26: Robustness check for the effect of vessel tonnage in port on air pollution,
various instrumental variable specifications

Dependent variable: pollutant concentration

CcO NO, PM;5 SO,
1) 2) ®3) 4
Panel A: Exclude cyclones within 800 miles of ports
Vessel Tonnage 18.24 0.90 0.84 0.06
(11.80) (0.31) (0.51) (0.12)
Adjusted R? 0.54 0.73 0.35 0.44
Observations 524,197 604,632 428,220 484,745
Panel B: Six-day lagged cyclones
Vessel Tonnage 16.90 1.25" 0.97 0.16
(13.49) (0.36) (0.57) (0.12)
Adjusted R? 0.54 0.71 0.34 0.43
Observations 524,197 604,632 428,220 484,745

Panel C: Eight-day lagged cyclones

Vessel Tonnage 27.75™ 0.95" 0.95 0.08
(13.49) (0.34) (0.59) (0.12)

Adjusted R? 0.53 0.73 0.34 0.44

Observations 524,197 604,632 428,220 484,745

Panel D: Six-, seven-, and eight-day lagged cyclones (2SLS)

Vessel Tonnage 22.93* 112" 1.07* 0.12
(12.39) (0.32) (0.50) (0.11)

Adjusted R? 0.53 0.72 0.33 0.43

Observations 524,197 604,632 428,220 484,745

Panel E: Six-, seven-, and eight-day lagged cyclones (LIML)

Vessel Tonnage 23.08" 1.13" 1.09* 0.12
(12.53) (0.33) (0.52) (0.11)

Adjusted R? 0.53 0.72 0.32 0.43

Observations 524,197 604,632 428,220 484,745

Panel F: Cyclone counts

Vessel Tonnage -9.15 0.55 1.22* -0.03
(10.92) (0.27) (0.48) (0.09)

Adjusted R? 0.55 0.75 0.30 0.44

Observations 524,197 604,632 428,220 484,745

Notes: This table presents the results of robustness check for Table 2 with various instrumental variable
specifications. Each panel presents regressions using an alternative instrumental variable specification. All
regressions include weather controls, such as the quadratics of maximum temperature, minimum tempera-
ture, dew point temperature, precipitation, wind speed, and relative wind direction between a monitor-port
pair. All regressions also include county-by-year, month, day-of-week, holiday, and monitor-port pair fixed
effects. Standard errors are clustered by monitor-port pair and day. The first-stage F statistics for Panel A is
24-31, for Panel B is 21-33, for Panel C is 18-31, for Panel D is 8-12, and for Panel F is 29-41. Significance
levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.27: Robustness check for the effect of vessel tonnage in port on air pollution,
including and excluding different sets of observations where cyclones hit to ports

Dependent variable: pollutant concentration

CcO NO; PM; 5 SO,
1) 2) 3) 4
Panel A: Including 2 days before and after cyclones near ports
Vessel Tonnage 20.32 1.11™ 1.17 0.15
(13.61) (0.34) (0.57) (0.12)
Adjusted R? 0.54 0.72 0.31 0.43
Observations 529,953 611,553 433,831 491,725

Panel B: Excluding 21 days after cyclones near ports

Vessel Tonnage 22.62 1.20" 1.54* 0.12
(13.87) (0.35) (0.59) (0.12)

Adjusted R? 0.54 0.71 0.25 0.44

Observations 508,766 586,027 412,972 465,777

Notes: Panel A presents the instrumental variable estimation of the effect of vessel tonnage in ports on
air pollution, where we include the dates when there exist tropical cyclones near ports (e.g., within the
200-mile radius of ports) and two days before and after the events. Panel B presents the instrumental
variable estimation of the effect of vessel tonnage in ports on air pollution, where we exclude 21 days
of observations once cyclones are close to certain ports (e.g., within the 200-mile radius). Each column
presents an individual regression on a local air pollutant. Log of vessel tonnage is instrumented by an
indicator of seven-day lagged and 500-mile distant cyclones from ports. All regressions include weather
controls, such as the quadratics of maximum temperature, minimum temperature, dew point temperature,
precipitation, wind speed, and relative wind direction between a monitor-port pair. All regressions also
include county-by-year, month, day-of-week, holiday, and monitor-port pair fixed effects. Standard errors
are clustered by monitor-port pair and day. The first-stage F statistics for Panel A is 21-35 and for Panel B is
21-34. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.28: Effect of air pollution on hospital visit rates in California port areas, satellite-

based projected data
Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
@) @ ®) @) ©) (6)

Panel A: Overall population
PMy5 1.82% 241 7.05™ 2.38" 0.51* 1.42%

(0.32) (0.51) (1.38) (0.50) (0.22) (0.52)
Adjusted R? 0.39 0.33 0.47 0.35 0.22 0.40
Observations 1,799,639 1,799,639 1,799,639 1,799,639 1,799,639 1,799,639
Panel B: Black
PM; 5 5.45™ 5.81™ 16.72™ 4.33™ 0.63 -0.10

(1.30) (1.09) (3.25) (1.45) (0.63) (1.50)
Adjusted R? 0.17 0.10 0.23 0.13 0.05 0.19
Observations 884,524 884,524 884,524 884,524 884,524 884,524
Panel C: White
PM; 5 1.40™ 1.53™ 5.54 2.82 0.10 1.77*

(0.40) (0.34) (1.24) (0.89) (0.43) (0.98)
Adjusted R? 0.17 0.09 0.33 0.28 0.15 0.32
Observations 1,674,738 1,674,738 1,674,738 1,674,738 1,674,738 1,674,738

Notes: This table presents the instrumental variable estimation of the effect of PMj, 5 on hospital visit rates for the
overall population, Blacks, and Whites. PM; 5 measures are satellite-based projections, which are standardized by
the sample mean and standard deviation. Each entry presents an individual regression of an air pollutant on an
illness category. Pollution measures are instrumented by fitted vessel tonnage in ports, wind direction, wind speed,
and their interactions. All regressions include weather controls, such as the quadratics of maximum temperature,
minimum temperature, dew point temperature, and precipitation. All regressions also include county-by-year, month,
day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are
clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population. The first-stage F
statistics range from 32 to 45. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.29: Effect of port traffic on the number of reporting pollution monitors in US port
areas

Dependent variable: number of active monitor sites

(1) (2)
Vessel Tonnage -0.18

(0.27)
Vessel Counts -0.08

(0.12)

1st-Stage F Stat. 14.47 9.16
Adjusted R? 0.91 0.91
Observations 155,183 155,183

Notes: This table presents the instrumental variable estimation of the effect of vessel tonnage and counts on the
number of active monitors reporting pollution readings within a 25-mile radius of ports. Each entry presents an
individual regression. The endogenous variables, vessel tonnage and counts, are instrumented by an indicator
of seven-day lagged cyclones that are at least 500-mile distant from ports. All regressions include weather
controls, such as the quadratics of maximum, minimum, and dew point temperature, precipitation, wind speed,
and wind direction. All regressions also include year, month, day-of-week, holiday, and port fixed effects. An

observation is a port-day. Standard errors are clustered by port and day. Significance levels are indicated by ***
1%, ** 5%, and * 10%.

77



Table A.30: Effect of air pollution on hospital visit rates in California port areas — joint
estimation with zip codes within a 25-mile radius from ports

Dependent variable: hospital visits/million residents

All Respiratory All Heart All Psychiatric
@ @ ®) *) ©) (6) @) ®) ©)
Panel A: Overall population

CO 15.34 9.70 21.16™ 0.59 2.05" -0.17 —-0.51 0.31 —0.08
(5.22) (3.03) (5.97) (1.59) (1.00) (1.80) (1.73) (1.08) (1.99)

NO, -5.02 —22.14™ 2.64 4.30 244 0.75
(4.97) (8.49) (1.51) (2.84) (1.70) (3.23)

SO, 0.99 18.29* 1.83 -1.53 2.70* 211
(4.37) (7.27) (1.40) (2.59) (1.55) (2.91)

1st-Stage F Stat. 23.16 9.46 5.77 23.16 9.46 5.77 23.16 9.46 5.77

AR Stat. P-val 3.99-10 5.16e-10 5.16e-10  3.99e-10  5.16e-10  5.16e-10 3.99e-10 5.16e-10  5.16e-10
SW S Stat. P-val 5.16e-06 6.40e-06  6.40e-06 5.16e-06 6.40e-06 6.40e-06 5.16e-06 6.40e-06  6.40e-06
Observations 1,776,040 1,742,012 1,742,012 1,776,040 1,742,012 1,742,012 1,776,040 1,742,012 1,742,012

Panel B: Black

co -8.67 -1.08 7.69 2.65 3.89 3.26 -4.95 ~3.00 ~453
(13.01)  (7.08)  (1461)  (4.95) (2.89) (5.31) (5.61) (3.16) (6.33)
NO, 32.05* -16.77 3.40 1.19 541 291
(13.72) (1.64)  (5.20) (8.23) (5.90) (10.12)
SO, 4046™  52.79* 3.33 245 533 3.20
(1154)  (17.62) (4.64) (7.32) (5.20) (8.89)
Ist-Stage F Stat.  15.41 9.86 5.43 15.41 9.86 5.43 15.41 9.86 543
AR Stat. P-val 0 0 0 0 0 0 0 0 0

SW S Stat. P-val 0.000361 0.000292 0.000292 0.000361 0.000292 0.000292 0.000361 0.000292 0.000292
Observations 877,072 871,296 871,296 877,072 871,296 871,296 877,072 871,296 871,296

Panel C: White

Co 17.02*  1249™  20.30" 3.03 327" 1.40 0.23 0.86 ~0.11
(4.35) (2.69) (5.16) (2.76) (1.83) (3.41) (2.94) (1.91) (3.70)

NO, —7.48° —1474 099 3.54 2.15 1.84
(4.03) (7.83) (2.49) (5.53) (2.74) (6.07)

SO, —4.59 6.20 1.09 ~1.50 242 1.07
(3.39) (6.39) 2.21) @.71) (2.33) (4.98)

Ist-Stage F Stat.  24.35 9.62 3.89 24.35 9.62 3.89 24.35 9.62 3.89

AR Stat. P-val 8.13e-10  9.80e-10  9.80e-10  8.13e-10  9.80e-10  9.80e-10 8.13e-10  9.80e-10  9.80e-10
SW S Stat. P-val 8.72e-06 8.90e-06 8.90e-06 8.72e-06 8.90e-06 8.90e-06 8.72e-06 8.90e-06  8.90e-06
Observations 1,650,747 1,616,890 1,616,890 1,650,747 1,616,890 1,616,890 1,650,747 1,616,890 1,616,890

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital visit rate within
a 25-mile radius of CA ports, jointly estimated for multiple air pollutants. Each column in a panel presents an individual
regression on a set of pollutants. Pollution concentrations are standardized to their means and standard deviations,
and they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All
regressions include weather controls and their quadratic terms, such as the quadratics of maximum temperature,
minimum temperature, dew point temperature, and precipitation. All regressions also include county-by-year, month,
day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are
clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population. Significance levels
are indicated by *** 1%, ** 5%, and * 10%.
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Table A.31: Effect of air pollution on hospital visit rates in California port areas — joint
estimation with zip codes within a 15-mile radius from ports

Dependent variable: hospital visits/million residents

All Respiratory All Heart All Psychiatric
) @ ®) @) ©) (6) @) ®) ©)
Panel A: Overall population
CO 21.36™ 14.32" 24.64™ 1.72 227" 0.69 -0.83 0.26 —-0.63
(5.42) (3.31) (6.14) (1.53) (1.03) (1.81) (1.68) (1.17) (1.89)
NO, -10.97 -23.31" 0.98 3.58 3.78" 2.01
(5.29) (9.29) (1.52) (3.27) (1.69) (3.46)
SO, -5.36 12.78" 0.33 —2.45 3.66™ 2.09
(4.25) (7.20) (1.30) (2.76) (1.45) (2.93)
Observations 866,835 859,168 859,168 866,835 859,168 859,168 866,835 859,168 859,168
Panel B: Black
CcO 9.65 11.09 24.71 1.12 2.41 0.87 -8.60 -5.20 —4.61
(13.19) (7.57) (15.60) (5.36) (3.28) (5.72) (5.77) (3.66) (6.63)
NO, 17.70 -28.60 3.18 3.23 11.80™ -1.25
(14.16) (24.96) (5.70) (9.48) (5.90) (11.15)
SO, 24.70" 45.54 2.48 0.13 12.19* 13.10
(11.01) (18.59) (4.68) (7.70) (5.05) (9.46)
Observations 562,552 557,677 557,677 562,552 557,677 557,677 562,552 557,677 557,677
Panel C: White
CcO 23.97* 15.59" 26.54™ 6.73" 5.52 3.29 2.64 3.09 0.13
(5.08) (3.32) (5.77) (3.06) (2.13) (3.69) (3.27) (2.27) (3.82)
NO, —-14.92 —23.78" -3.45 4.83 1.06 6.43
(4.51) (9.01) (2.69) (6.43) (3.09) (6.99)
SO, -9.28" 8.92 -3.60 -7.30 0.46 —4.46
(3.65) (7.41) (2.31) (5.45) (2.57) (5.80)
Observations 802,910 795,414 795,414 802910 795414 795414 802,910 795414 795414

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital visit rate within a
15-mile radius of CA ports, jointly estimated for multiple air pollutants. Each column in a panel presents an individual
regression on a set of pollutants. Pollution concentrations are standardized to their means and standard deviations, and
they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All regres-
sions include weather controls and their quadratic terms, such as the quadratics of maximum temperature, minimum
temperature, dew point temperature, and precipitation. All regressions also include county-by-year, month, day-of-week,
holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip
code-port pair and day. Estimates are weighted by the zip code-specific population. Significance levels are indicated by
** 1%, ** 5%, and * 10%.
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Table A.32: Effect of fitted vessel tonnage on highway congestion in California port areas

Dependent variable: traffic delay with respect to threshold speed

35 mph 40 mph 45 mph 50 mph 55 mph 60 mph
1 2 ©) (4) ) (6)
Panel A: Vessel tonnage
Fitted Vessel Tonnage 7.49 8.78 9.97 10.92 11.69 12.43
(5.86) (6.73) (7.57) (8.43) (9.36) (10.33)
Adjusted R? 0.33 0.35 0.37 0.39 0.42 0.44
Observations 2,625,756 2,625,756 2,625,756 2,625,756 2,625,756 2,625,756
Panel B: Vessel counts
Fitted Vessel Counts 4.84 5.67 6.44 7.06 7.55 8.03
(3.79) (4.35) (4.89) (5.45) (6.04) (6.67)
Adjusted R? 0.33 0.35 0.37 0.39 0.42 0.44
Observations 2,625,756 2,625,756 2,625,756 2,625,756 2,625,756 2,625,756

Notes: This table presents the OLS estimation for the effect of fitted vessel tonnage and counts on highway
congestion in California’s port areas. The fitted values are obtained from regressing log vessel tonnage or vessel
counts on the instrument of seven-day lagged and 500-mile distant cyclones from ports. The dependent variable
is measured as average delays to a threshold speed. Each column presents a regression of threshold speed. All
regressions include weather controls (i.e., the quadratics of maximum temperature, minimum temperature, dew
point temperature, precipitation, and wind direction) and fixed effects (i.e., county-by-year, month, day-of-week,
holiday, freeway, and VDS-port). An observation is a VDS-port-day. Standard errors are clustered by VDS-port
and day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.33: Effect of air pollution on hospital visit rates in California port areas, excluding
strong windy days

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1) 2) 3) 4) ®) (6)
Panel A: Overall population
CcO 2.56* 2.65"* 9.55"* 2.95* 0.67* 1.63*
(0.43) (0.67) (1.77) (0.67) (0.27) (0.67)
NO, 2.56"* 2.50"* 9.06"* 3.13 0.75" 1.85"
(0.42) (0.64) (1.71) (0.64) (0.27) (0.65)
PM; 5 1.78* 1.90* 6.60"* 1.99* 0.50* 1.17*
(0.31) (0.48) (1.31) (0.50) (0.20) (0.49)
SO, 3.41 3.67* 12.97* 438 1.27* 2.97
(0.65) (0.96) (2.58) (0.97) (0.41) (0.98)
Panel B: Black
CcO 717 5.62"* 20.05* 5.80"* 0.64 0.08
(1.64) (1.44) (3.98) (1.75) (0.78) (1.80)
NO, 7.52% 7.22% 22.56" 6.97% 1.34 1.09
(1.83) (1.56) (4.39) (1.93) (0.88) (1.99)
PM; 5 537 5.09** 16.65* 4.01 0.33 -0.26
(1.25) (1.10) (3.13) (1.37) (0.55) (1.32)
SO, 10.08* 11.63* 33.61* 10.04* 2.36" 2.29
(2.60) (2.25) (6.24) (2.82) (1.27) (2.81)
Panel C: White
CcO 2.51 1.54* 9.15"* 4.00"* 0.39 2.49*
(0.55) (0.44) (1.62) (1.26) (0.55) (1.32)
NO, 241 1.25" 8.12 3.89" 0.42 2.51*
(0.52) (0.42) (1.55) (1.20) (0.54) (1.27)
PM; 5 1.77% 1.02* 6.02"* 2.83* 0.33 1.87*
(0.41) (0.33) (1.26) (0.96) (0.42) (0.99)
SO, 2.96* 1.58* 10.15" 512 0.86 3.89*
(0.74) (0.57) (2.17) (1.67) (0.75) (1.78)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospital

visit rate, where the observations with wind speed greater than 3.3 meters per second are excluded. Each
entry presents an individual regression of an air pollutant on an illness category. Pollution concentrations
are standardized to their means and standard deviations, and they are instrumented by fitted vessel
tonnage in ports, wind direction, wind speed, and their interactions. All regressions include weather
controls, such as the quadratics of maximum temperature, minimum temperature, dew point temperature,
and precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip
code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip
code-port pair and day. Estimates are weighted by the zip code-specific population. The first-stage F
statistics range from 25 to 72. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.34: Effect of air pollution on hospital visit rates for Black and White females in
California port areas

Dependent variable: hospital visits/million residents

All All All
Respiratory Heart Psychiatric
1) 2 3)
Panel A: Black female
CcO 22.15™ 6.68* 0.19
(4.85) (1.96) (2.50)
NO, 26.06"* 6.15"** 0.78
(5.10) (2.08) (2.62)
PMy 5 19.67* 4.58* 0.40
(3.91) (1.53) (1.90)
SO, 44 54 8.03* 1.89
(7.88) (3.20) (4.21)
Panel B: White female
CcO 11.42* 527 2.37
(1.95) (1.19) (1.68)
NO, 8.10™ 4.49* 242
(1.77) (1.06) (1.49)
PMy 5 6.66* 3.96"* 1.78
(1.60) (0.97) (1.33)
SO, 10.41* 6.19"* 3.48
(2.64) (1.58) (2.21)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hos-

pital visit rates for Black and White females. Each entry presents an individual regression of an
air pollutant on an illness category. Pollution concentrations are standardized to their means and
standard deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction,
wind speed, and their interactions. All regressions include weather controls, such as the quadratics
of maximum temperature, minimum temperature, dew point temperature, and precipitation. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and
day. Estimates are weighted by the zip code-specific population. The first-stage F statistics range from
21 to 83. Significance levels are indicated by *** 1%, ** 5%, and * 10%.

82



Table A.35: Effect of air pollution on all-cause total hospital visit rates in California port
areas

Dependent variable: hospital visits/million residents

Overall
Population Black White
1 2) 3)
Panel A: CO
CcO 19.02* 41.56"* 12.29*
(4.01) (8.65) (4.76)
Adjusted R? 0.69 047 0.60
Observations 1,776,040 877,072 1,650,747
Panel B: NO,
NO; 17.31"* 41.77* 10.91*
(3.69) (8.92) (4.23)
Adjusted R? 0.69 0.47 0.60
Observations 1,805,287 887,300 1,679,994
Panel C: PM; 5
PM; 5 13.41 30.08"* 9.02*
(3.11) (6.90) (3.85)
Adjusted R? 0.69 0.47 0.60
Observations 1,714,554 846,980 1,598,695
Panel D: SO,
SO, 26.07** 57.42** 15.97*
(5.69) (13.61) (6.05)
Adjusted R? 0.69 047 0.60
Observations 1,742,012 871,296 1,616,890

Notes: This table presents the instrumental variable estimation of the effect of air pollution on all-cause
total hospital visit rates for the overall population, Blacks, and Whites. Each entry presents an individual
regression of an air pollutant on an illness category. Pollution concentrations are standardized to their means
and standard deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction, wind
speed, and their interactions. All regressions include weather controls, such as the quadratics of maximum
temperature, minimum temperature, dew point temperature, and precipitation. All regressions also include
county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip
code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the
zip code-specific population. The first-stage F statistics range from 21 to 83. Significance levels are indicated
by *** 1%, ** 5%, and * 10%.
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Table A.36: Effect of air pollution on hospital visit rates in California port areas, principal
diagnoses

Dependent variable: hospital visits/million residents

All All All
Respiratory Heart Psychiatric
(1) 2 (3)
Panel A: Overall population
CcO 6.05™ 0.72% 0.32
(1.24) (0.22) (0.20)
NO; 491" 0.63 0.40™
(1.16) (0.20) (0.18)
PM; 5 3.70™ 0.51" 0.27"
(0.97) (0.16) (0.15)
SO, 7.43™ 0.83* 0.64™
(1.81) (0.32) (0.29)
Panel B: Black
CcO 10.83" 1.05 -0.40
(2.47) (0.69) (0.81)
NO, 13.38" 0.84 -0.15
(2.55) (0.71) (0.82)
PMy 5 10.02 0.84 -0.38
(1.94) (0.53) (0.61)
SO, 22.65™ 0.85 0.29
(4.05) (1.10) (1.24)
Panel C: White
CcO 4727 0.85" 0.65"
(0.97) (0.43) (0.36)
NO; 3.19™ 0.72* 0.72*
(0.89) (0.38) (0.31)
PMy5 2.43™ 0.66" 0.61™
(0.80) (0.34) (0.28)
SO, 423" 0.89 1.06™
(1.30) (0.57) (0.47)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospi-
tal visit rates for the overall population, Blacks, and Whites, where hospital visit rates are calculated
only using principal diagnoses. Each entry presents an individual regression of an air pollutant on an
illness category. Pollution concentrations are standardized to their means and standard deviations,
and they are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their
interactions. All regressions include weather controls, such as the quadratics of maximum tempera-
ture, minimum temperature, dew point temperature, and precipitation. All regressions also include
county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a
zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted
by the zip code-specific population. The first-stage F statistics range from 21 to 83. Significance levels
are indicated by *** 1%, ** 5%, and * 10%.
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Table A.37: Effect of air pollution on hospital visit rates in California port areas, Patient
Discharge Data

Dependent variable: hospital visits/million residents

All All All
Respiratory Heart Psychiatric
(1) 2 (3)
Panel A: Overall population
CcO 2.46™ 1.84" 0.98™
(0.48) (0.39) (0.35)
NO; 2117 1.76™ 1.13™
(0.43) (0.35) (0.32)
PM; 5 1.80" 1.36" 0.86™
(0.37) (0.30) (0.27)
SO, 290" 2.39 1.68™
(0.69) (0.57) (0.50)
Panel B: Black
CO 3.49* 2.92* 0.84
(1.44) (1.21) (1.05)
NO, 3.64 3.14* 1.46
(1.48) (1.23) (1.09)
PM;5 3.19™ 2.06™ 0.85
(1.16) (0.94) (0.80)
SO, 6.25™ 3.88 2.57
(2.34) (1.86) (1.62)
Panel C: White
CcO 3.15™ 2.83™ 1.36
(0.76) (0.74) (0.72)
NO; 2.24™ 219" 1.56
(0.67) (0.63) (0.64)
PMy5 2.10™ 1.93" 1.29*
(0.61) (0.58) (0.58)
SO, 241 2.42% 2.01*
(0.99) (0.94) (0.93)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on
hospital visit rates for the overall population, Blacks, and Whites, where hospital visit rates are cal-
culated only using the Patient Discharge Data. Each entry presents an individual regression of an
air pollutant on an illness category. Pollution concentrations are standardized to their means and
standard deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction,
wind speed, and their interactions. All regressions include weather controls, such as the quadratics
of maximum temperature, minimum temperature, dew point temperature, and precipitation. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and
day. Estimates are weighted by the zip code-specific population. The first-stage F statistics range from
21 to 83. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.38: Effect of air pollution on hospital visit rates in California port areas, Emergency
Department Data

Dependent variable: hospital visits/million residents

All All All
Respiratory Heart Psychiatric
(1) 2 (3)
Panel A: Overall population
CcO 8.05™ 1.127 0.78™
(1.49) (0.23) (0.36)
NO; 6.86™" 1.18" 0.77*
(1.40) (0.22) (0.34)
PM; 5 5.02 0.74™ 0.42
(1.16) (0.18) (0.28)
SO, 10.57 1.89" 1.35*
(2.23) (0.36) (0.56)
Panel B: Black
CcO 17.27 2.42* -0.90
(3.35) (0.99) (1.32)
NO, 20.20™ 2.46™ -0.90
(3.52) (1.03) (1.39)
PMy 5 15.19" 1.42* -1.38
(2.69) (0.76) (1.04)
SO, 33.69" 3.86™ -1.12
(5.55) (1.64) (2.25)
Panel C: White
CcO 6.67" 1.29™ 1.27*
(1.14) (0.47) (0.73)
NO; 4.89 1.36™ 1.11
(1.03) (0.41) (0.63)
PMy5 3.71™ 1.00" 0.81
(0.90) (0.37) (0.56)
SO, 6.81" 2.24™ 1.83
(1.51) (0.62) (0.93)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospi-
tal visit rates for the overall population, Blacks, and Whites, where hospital visit rates are calculated
only using the Emergency Department Data. Each entry presents an individual regression of an
air pollutant on an illness category. Pollution concentrations are standardized to their means and
standard deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction,
wind speed, and their interactions. All regressions include weather controls, such as the quadratics
of maximum temperature, minimum temperature, dew point temperature, and precipitation. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and
day. Estimates are weighted by the zip code-specific population. The first-stage F statistics range from
21 to 83. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.39: Effect of air pollution on hospital visit rates in California port areas, Ambulatory
Surgery Center Data

Dependent variable: hospital visits/million residents

All All All
Respiratory Heart Psychiatric
1) 2) 3)
Panel A: Overall population
CcO —-0.05 0.19 0.11
(0.28) (0.26) (0.19)
NO; -0.18 0.15 0.03
(0.26) (0.23) (0.18)
PMy 5 -0.09 0.09 0.05
(0.21) (0.19) (0.14)
SO, -0.33 0.12 0.05
(0.41) (0.37) (0.28)
Panel B: Black
CcO -0.32 0.40 0.01
(0.57) (0.39) (0.41)
NO; -0.52 0.35 0.10
(0.58) (0.42) (0.39)
PM; 5 -0.38 0.29 —0.003
(0.42) (0.30) (0.31)
SO, -0.85 0.50 0.10
(0.86) (0.63) (0.63)
Panel C: White
CO -0.27 -0.11 -0.25
(0.44) (0.50) (0.37)
NO; -0.29 -0.03 -0.35
(0.40) (0.44) (0.33)
PMy 5 -0.26 -0.14 -0.29
(0.35) (0.39) (0.29)
SO, -0.24 —0.02 -0.49
(0.58) (0.62) (0.49)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospi-
tal visit rates for the overall population, Blacks, and Whites, where hospital visit rates are calculated
only using the Ambulatory Surgery Center Data. Each entry presents an individual regression of an
air pollutant on an illness category. Pollution concentrations are standardized to their means and
standard deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction,
wind speed, and their interactions. All regressions include weather controls, such as the quadratics
of maximum temperature, minimum temperature, dew point temperature, and precipitation. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair
and day. Estimates are weighted by the zip code-specific population. The first-stage F statistics range
from 21 to 83. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.40: LIML estimation of the effect of air pollution on hospital visit rates for the
overall population in California port areas

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
1) @ ®) @) ©) (6)
Panel A: CO
cOo 2.44™ 2.66™" 9.09* 3.09" 0.51" 1.81
(0.41) (0.58) (1.61) (0.68) (0.31) (0.73)
Adjusted R? 0.33 0.29 0.42 0.31 0.17 0.36
Observations 1,776,040 1,776,040 1,776,040 1,776,040 1,776,040 1,776,040
Panel B: NO,
NO, 1.99" 2.58" 7.50" 3.01 0.57* 1.94™
(0.38) (0.55) (1.49) (0.62) (0.28) (0.67)
Adjusted R? 0.33 0.29 0.42 0.31 0.17 0.36
Observations 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287
Panel C: PM2,5
PM;5 1.49™ 1.98™ 5.64™ 2,11 0.41" 1.33"
(0.33) (0.47) (1.29) (0.53) (0.23) (0.56)
Adjusted R? 0.33 0.29 0.42 0.31 0.18 0.36
Observations 1,714,554 1,714,554 1,714,554 1,714,554 1,714,554 1,714,554
Panel D: SO,
S5O, 245" 4.09* 10.74™ 4.10™ 0.95* 2.86™"
(0.61) (0.86) (2.33) (0.97) (0.43) (1.03)
Adjusted R? 0.33 0.28 0.42 0.31 0.17 0.36
Observations 1,742,012 1,742,012 1,742,012 1,742,012 1,742,012 1,742,012

Notes: This table presents the LIML instrumental variable estimation of the effect of air pollution on hospital visit
rates for the overall population. Each entry presents an individual regression of an air pollutant on an illness category.
Pollution concentrations are standardized to their means and standard deviations, and they are instrumented by
fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All regressions include weather
controls, such as the quadratics of maximum temperature, minimum temperature, dew point temperature, and
precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates
are unweighted. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.41: Placebo tests for the effect of California Ocean-Going Vessel At-Berth Regulation
on air pollution

Dependent variable: residual of log pollution concentration

CcO NO; PMy s 50,
1 ) (©) (4)
Panel A: One year before the policy
CA Regulation 0.03 0.02 0.07 -0.005
(0.08) (0.08) (0.13) (0.13)
Date 0.0001 —-0.001 0.002 —-0.001
(0.002) (0.002) (0.003) (0.003)
CA Regulation x Date 0.002 0.001 -0.01 0.01
(0.002) (0.002) (0.004) (0.004)
Pre-policy Mean 642.22 18.71 15.01 1.89
Observations 4,745 5,055 1,913 3,129
Panel B: One year after the policy
CA Regulation 0.15 0.10 0.07 -0.01
(0.10) (0.09) (0.11) (0.27)
Date —-0.003 0.0003 0.001 0.003
(0.002) (0.002) (0.002) (0.004)
CA Regulation x Date 0.001 —0.0003 —-0.004 —-0.002
(0.002) (0.003) (0.003) (0.01)
Pre-policy Mean 599.15 18.01 14.03 1.74
Observations 4,828 5,166 2,673 3,359
Panel C: Neighboring areas
CA Regulation 0.27 0.13* —-0.23" 0.15*
(0.16) (0.06) (0.17) (0.06)
Date 0.001 -0.001 0.004" 0.01
(0.003) (0.001) (0.002) (0.01)
CA Regulation x Date -0.01 -0.001 -0.01" -0.01
(0.004) (0.002) (0.004) (0.02)
Pre-policy Mean 406.79 11.37 11.28 1.31
Observations 1,591 3,195 1,364 509

Notes: This table presents the placebo tests for RDD estimation of the effect of the California at-berth reg-
ulation on local air pollution. The second-stage RDD dependent variable is taken from the residuals by
regressing log pollution concentrations on weather controls (i.e., the quadratics of maximum temperature,
minimum temperature, dew point temperature, precipitation, wind speed, and relative wind direction be-
tween a monitor-port pair), fixed effects (i.e., county-by-year, month, day-of-week, holiday, and port-monitor
pair), and log vessel tonnage (instrumented by seven-day lagged and 500-mile distant cyclones from ports).
The local linear bandwidth is specified as 60 days on both sides of the policy threshold. Panel A shows the
results of specifying placebo policy dates one year before the actual policy date. Panel B shows the results of
specifying placebo policy dates one year after the actual policy date. Panel C shows the results by assigning
the policy date to neighboring areas located 75 to 100 miles from ports. An observation is a monitor-port-day.
Standard errors are clustered by monitor-port pair and normalized day. Significance levels are indicated by
**%* 1%, ** 5%, and * 10%.
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Table A.42: Projected energy consumption by marine vessels in the United States

Fossil Fuel

Electricity

Reference Shore Power Reference Shore Power
2017 0.78 0.78 0.00 0.00
2020 0.77 0.72 0.01 0.05
2025 0.81 0.64 0.01 0.18
2030 0.85 0.66 0.01 0.19
2035 0.90 0.70 0.01 0.22
2040 0.93 0.72 0.01 0.22
2045 0.97 0.74 0.01 0.24
2050 1.01 0.77 0.01 0.25

Notes: This table presents projected marine vessel energy consumption simulated in Yale-NEMS. The
unit is quadrillion Btu. The data include electricity and fossil fuel consumption for the reference case
and the shore power scenario.
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Figure B.1: Share of nonattainment counties adjacent to the major ports in the United
States.

Notes: The figure plots the share of nonattainment counties that fail to meet the National Ambient Air
Quality Standards and locate within a 50-mile radius of the major ports in the United States. The standards
include Carbon Monoxide (1971), Nitrogen Dioxide (1971), 8-Hour Ozone (2008, 2015), PM¢ (1987), PM> 5
(1997, 2006, 2012), Sulfur Dioxide (1971, 2010). The data are obtained from US EPA NAAQS Greenbook.
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Figure B.2: Locations of zip codes near the major California ports.

Notes: This figure plots the locations of zip codes that are within 25 miles of the major ports in California,
shown in blue areas. According to the US 2010 Decennial Census, around 47 percent of the population in
California resides in the blue areas.
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Figure B.3: (a) Distribution of Hispanic population by distance to major California ports.
(b) Distribution of the Hispanic population in California port areas by percentile of PM> 5
concentration.

Notes: Panel (a) plots population distribution in the California port areas by the distance between census
tract and port for the Hispanic population. We obtain the population data at the census tract level and
assign a distance between a census tract to its nearest mapped port to the population within the census
tract. Panel (b) plots population distribution in the California port areas by percentile of PM; 5 concentration.
Larger pollution percentiles represent higher pollution exposures. The data are obtained from the US 2010
Decennial Census and US EPA Air Quality System.
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Figure B.4: Average PM, 5 concentrations, Black population shares, and White population
shares in zip codes near ports in Los Angeles, California.

Notes: Panel A presents the daily average PM, 5 concentrations at the zip code level based on the EPA
monitoring data within 25 miles from the two major ports near Los Angeles, California. Panel B shows the
percentage of Black population in a zip code for the same area, while Panel C shows the percentage of White
population. The blue crosses in the panels represent the location of PM, 5 monitor sites with available data.
The red stars indicate the Ports of Los Angeles and Long Beach. The pollution data are obtained from the US
EPA Air Quality System. The population data are acquired from the US 2010 Decennial Census.
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Figure B.5: Average PM, 5 concentrations, Black population shares, and White population
shares in zip codes near ports in San Francisco, California.

Notes: Panel A presents the daily average PM, 5 concentrations at the zip code level based on the EPA
monitoring data within 25 miles from the two major ports near San Francisco, California. Panel B shows the
percentage of Black population in a zip code for the same area, while Panel C shows the percentage of White
population. The blue crosses in the panels represent the location of PM; 5 monitor sites with available data.
The red stars indicate the Ports of San Francisco and Oakland. The pollution data are obtained from the US
EPA Air Quality System. The population data are acquired from the US 2010 Decennial Census.

93



440 A 161
— Black
430 White
—~ o~ 4
fs) o 15
o [=%
& 4204 =
S <
o g
410
14
400 1
0.9
0.8
1054
=
—_
Qo
§ g o1
~ o
: :
=
g 10.0- 064
0.5
9.5 . . . . . . .
2010 2012 2014 2016 2010 2012 2014 2016
Year

Figure B.6: Annual air pollution exposure for individuals visiting hospitals by race.

Notes: This figure plots the annual averages of baseline pollution exposure separately for non-Hispanic Black
and White patients in the areas within 25 miles from ports in California. The patients visit hospitals due to
psychiatric, respiratory, and heart-related illnesses during 2010-2016. The pollution data are obtained from
the US EPA Air Quality System, and the hospital visit data are obtained Office of Statewide Health Planning
and Development of California.
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Figure B.7: Average daily share of vessel type in ports.

Notes: This figure presents the average daily share of vessel types in major 27 US ports, separately for the
days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and the days
when there are no such cyclones. The error bars indicate standard deviations. The data are obtained from
the US Army Corps of Engineers.
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Figure B.8: First-stage results of adjusted predictions of pollutant concentrations with
respect to wind direction and wind speed.

Notes: This figure presents the adjusted predictions of pollutant concentrations generated by the first-stage
regressions, i.e., equation (4) of 25LS. We allow the wind direction and wind speed variables to vary, while
keeping other non-focal variables constant. Specifically, we evaluate pollutant concentrations at the location
of Port of Long Beach and zip code 90062 for the year 2015, with the projected vessel tonnage as 4.56, dew
point temperature as 4.56, precipitation as 0.42, maximum temperature as 21.63, minimum temperature as
12.83, month as July, day-of-week as Friday, and non-holiday days. The wind direction blowing north is
normalized to zero, and it increases up to 360 degrees clockwise.
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Figure B.9: Effect of air pollution on hospital visit rate for the overall population with
different time windows following pollution exposure in California port areas.

Notes: This figure plots IV estimates of equation (3) with different time windows following pollution
exposure. Estimates are shown for time windows of one day, three days, five days, nine days, 14 days, 21
days, and 28 days. The dependent variable is the sum of hospital visits over the number of time windows per
million residents, indicated on the x-axis. The one-day window estimates are also reported in columns (3),
(4), and (7) in Panel A of Table 3. The pollution measures are instrumented by fitted vessel tonnage in ports,
wind direction, wind speed, and interactions. All regressions include a set of weather controls, such as the
quadratics of maximum, minimum, and dew point temperatures, precipitation, and their leads up to the
time window. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port
pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair
and day. Estimates are weighted by zip code-specific population. The error bars represent 95% confidence
intervals.
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Figure B.10: Effect of air pollution on hospital visit rate for Blacks with different time
windows following pollution exposure in California port areas.

Notes: This figure plots IV estimates of equation (3) with different time windows following pollution
exposure. Estimates are shown for time windows of one day, three days, five days, nine days, 14 days, 21
days, and 28 days. The dependent variable is the sum of hospital visits over the number of time windows per
million residents, indicated on the x-axis. The one-day window estimates are also reported in columns (3),
(4), and (7) in Panel B of Table 3. The pollution measures are instrumented by fitted vessel tonnage in ports,
wind direction, wind speed, and interactions. All regressions include a set of weather controls, such as the
quadratics of maximum, minimum, and dew point temperatures, precipitation, and their leads up to the
time window. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port
pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair
and day. Estimates are weighted by zip code-specific population. The error bars represent 95% confidence
intervals.
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Figure B.11: Effect of air pollution on hospital visit rate for Whites with different time
windows following pollution exposure in California port areas.

Notes: This figure plots IV estimates of equation (3) with different time windows following pollution
exposure. Estimates are shown for time windows of one day, three days, five days, nine days, 14 days, 21
days, and 28 days. The dependent variable is the sum of hospital visits over the number of time windows per
million residents, indicated on the x-axis. The one-day window estimates are also reported in columns (3),
(4), and (7) in Panel C of Table 3. The pollution measures are instrumented by fitted vessel tonnage in ports,
wind direction, wind speed, and interactions. All regressions include a set of weather controls, such as the
quadratics of maximum, minimum, and dew point temperatures, precipitation, and their leads up to the
time window. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port
pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair
and day. Estimates are weighted by zip code-specific population. The error bars represent 95% confidence
intervals.
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Figure B.12: Effects of PM; 5 on hospital visit rates by pollution percentile using satellite-
based pollution measures.

Notes: This figure plots the effects of PM, 5 pollution on total hospital visit rates (related to respiratory, heart,
and psychiatric illnesses) in eight pollution percentile groups. The PM, 5 pollution measures are based
on satellite-based pollution data. Pollution concentrations in regressions are standardized to their means
and standard deviations, and they are instrumented by fitted vessel tonnage in ports, wind direction, wind
speed, and their interactions. Error bars correspond to 95% confidence intervals, where standard errors from
regressions are clustered by port-zip code and day. An observation is a zip code-port-day.
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Figure B.13: Effects of pollution on hospital visit rates by distance to nearest pollution

monitors.

Notes: This figure plots effects of pollution on total hospital visit rates (related to respiratory, heart, and
psychiatric illnesses) for zip codes by distance to nearest pollution monitors. Pollution concentrations in
regressions are standardized to their means and standard deviations, and they are instrumented by fitted
vessel tonnage in ports, wind direction, wind speed, and their interactions. Error bars correspond to 95%
confidence intervals, where standard errors from regressions are clustered by port-zip code and day. An
observation is a zip code-port-day. Missing values indicate that there are monitors within such distance to

zip codes.
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Figure B.14: Cluster bootstrap inference for the effect of California Ocean-Going Vessel
At-Berth Regulation on air pollutant concentrations.

Notes: The figure plots the the local linear RDD point estimates and 95% confidence intervals from the
baseline regression (shown in Table 6) and a wild cluster bootstrap algorithm.
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Figure B.15: Robustness check for the effect of California Ocean-Going Vessel At-Berth
Regulation on air pollutant concentrations with varying RDD bandwidths.

Notes: The figure plots the local linear RDD point estimates and 95% confidence intervals with varying
bandwidths (i.e., 55-75 days on both sides of the policy threshold). The baseline bandwidth is 65 days, as
indicated by the red dots.
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Figure B.16: Robustness check for the effect of California Ocean-Going Vessel At-Berth
Regulation on air pollutant concentrations with varying RDD “donut” periods.

Notes: The figure plots the local linear RDD point estimates and 95% confidence intervals with varying
“donut” periods (i.e., removing 0-7 days of observations on both sides of the policy threshold). The baseline
“donut” period is 0 day, as indicated by the red dots.
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Figure B.17: Projected emissions of local air pollutants from marine vessels and electricity
generation in the United States.

Notes: This figure plots local air pollutant emissions from marine vessels and power plants in the United
States under the reference and shore power scenarios, projected in Yale-NEMS. The projection starts from
2017 indicated by the gray dotted lines.
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C Supplementary Analysis (For Online Publication)

C.1 Results Comparison

This appendix presents supplementary analyses for the main text. We first present compar-
isons of our baseline estimates to the existing evidence in the literature. We then provide
additional evidence on how pollution affects different unconditional quantiles of hospital
visit distributions for Blacks and Whites. In the third part, we show the estimates of
the reduced-form relationship between vessels in ports and human health. Lastly, we
present the analysis of the relationship between Black-White health gap and socioeconomic

characteristics.

Effect of vessels in ports on air pollution. We first compare our instrumented estimates
(focusing on the effects of vessel tonnage) in Table 2 to the existing evidence on the
contributions of seaports to local air pollution. We are not aware of any other study that
explores this question in the literature; however, some government reports and online
articles address the relationship between port and local air pollution. For example, US EPA
estimates that ocean-going vessels contribute to 7% of NOy emissions in Ports of Baton
Rouge/New Orleans and up to 61% in the Santa Barbara areas (EPA, 2003). In addition,
another evidence states that marine shipping in ports accounts for as much as half SOy
emissions in major port cities, such as Los Angeles.!

Our estimates show that a 100,000 Mt vessel tonnage increase in port leads to a 1.17 ppb
increase in NO» concentrations. The summary statistics in Table 1 show that on average
there is 425,000 Mt vessel tonnage in a port in a day. This tonnage results in about a 5 ppb
increase in NO» concentrations in port areas in the US, a 36% increase of the daily mean
concentration. This result is within the range of previously cited sources.

We also compare our estimates to the NAAQS to examine whether pollution from ports
is likely to lead to nonattainment status.? The current one-hour standard for CO is that the
pollution concentration cannot exceed 35,000 ppb more than once per year. Our results
show that one average-sized vessel (29,000 Mt) in a port results in a 6.64 ppb increase in
CO pollution.? Combining this 6.64 ppb increase with the average daily maximum of CO
(shown in Table A.3), the estimated resulting concentration is 846.54 ppb (6.64 + 839.9),
which is far below the EPA standard. Similarly, the resulting pollution concentrations

1See https:/ /www.ft.com/content/31d0e224-dde8-11e8-9f04-38d397e6661c.

2The details of the standards for pollutants considered harmful to public health and the environment are
available at https://www.epa.gov/ criteria-air-pollutants /naaqs-table.

3The 6.64 ppb increase is calculated from 0.29x23.19 based on the estimates in Table 2 and summary
statistics reported in Table 1.
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for NO, and SO, due to average gross vessel tonnage in ports are also below the EPA’s
one-hour standards.*

EPA has established a 24-hour standard for PM; 5 at 35 micrograms per cubic meter
(ug/m?). Adding the increase in PM; 5 concentrations 0.35 ug/m? (0.29x1.20) (owing to
an average-sized vessel in a port) to the daily 24-hour average (10.66 ug/m?) results in
a concentration of 11 ug/ m3, which is around 31% of the EPA standard. Note that the
calculations presented above are based on the summary averages across all ports. Some
areas on certain days may still exceed the EPA standards due to increased vessel counts in

ports.

Effect of air pollution on health. Since there is a large body of economics and epidemio-
logical literature examining the effect of air pollution on health, it is natural to compare our
estimates in Panel A of Table 3 to the literature. Compared to Schlenker and Walker (2016),
our estimates associated with the effect of CO on respiratory and heart hospital visits are
relatively larger. For example, we find that a one ppb increase in CO concentration leads to
a 0.02% increase in all respiratory hospital visits, while Schlenker and Walker (2016) find a
0.037% increase.> The discrepancy in results may be driven by different studied locations.
Other epidemiological studies show the effect of a one ppb increase in CO pollution on
respiratory hospital visits in a range of 0.001-0.008% (e.g., Hwang and Chan, 2002; Peel
et al., 2005; Stieb et al., 2009), which are smaller than our estimates.

For heart-related illness, we find that a one ug/ m? increase in PM, 5 concentration
leads to a 0.3% increase of hospital visits, which is higher than the estimates 0.13-0.15%
in the epidemiology literature (e.g., Dominici et al., 2006; Bell et al., 2008). Two recent
epidemiology studies find evidence that a 0.11% increase in psychiatric hospital visits
is attributed to a one ug/ m?3 increase in PM, 5 concentration, which is fairly close to our

estimate, 0.09%.

C.2 RIF-Quantile Effect of Air Pollution on Health

We provide additional evidence on how pollution affects different unconditional quantiles
of the hospital visit distributions for Blacks and Whites using the unconditional quantile
regression method introduced by Firpo et al. (2009). This method involves calculating the
re-centered influence function (RIF) for the outcome variable (e.g., hospital visit rates) at a

certain quantile and replace the dependent variable in equation (3) with the calculated RIF.
n=1{y<qn}
fulan) 7

4The one-hour standards for NO, and SO, are 100 parts per billion (ppb) and 75 ppb, respectively.
5This calculation requires converting standardized estimates to the level before standardization.

The RIF for hospital visit y at the nth quantile g, is calculated as RIF(y, q,,) = g, +
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where f,(q,,) is the density function of y at quantile g,. In practice, we calculate 19 RIF
statistics, starting from the 5th quantile to the 95th quantile of the hospital visit rate
distribution for each subsample of Blacks and Whites. In total, we fit 38 RIF-quantile
regressions for each of the four studied air pollutants. Because pollution is endogenous,
we adopt a control-function approach, where we include the residuals from the first-stage
regression equation (4) into the regression equation of interest (3). One caveat of this
RIF-quantile analysis using the control-function approach is that we should interpret the
standard errors carefully because there may exist sampling error in the first-stage residuals.

The regression estimates illustrate how the effect of pollution on hospital visit rates
directly transforms to the unconditional distribution of hospital visit rates. Figure C.1
presents the RIF-quantile regression estimates by race and pollutant, suggesting that at the
upper quantiles of the hospital visit rate distribution, air pollution has larger impacts on
Blacks compared to Whites.
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Figure C.1: RIF-quantile effects of pollution on hospital visit rates by race.

Notes: This figure plots the estimates from 38 individual regressions of equation (3) for each air pollutant,
with 19 regressions for each race. The dependent variable is the RIF statistics of total hospital visit rate
associated with respiratory, heart, and psychiatric ailments for a given quantile. The pollution measures
are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and interactions. All
regressions include a set of weather controls, such as the quadratics of maximum, minimum, and dew point
temperatures and precipitation. All regressions also include county-by-year, month, day-of-week, holiday,
and zip code-port pair fixed effects. Standard errors are clustered by zip code-port pair and day. Estimates
are weighted by zip code-specific population. The error bars represent 95% confidence intervals.

C.3 Reduced-form Relationship between Vessels in Ports and Health

This section examines the reduced-form relationship between the number of vessels in
ports and human health. We estimate the regression model in equations (1) and (2) by
specifying the dependent variable as hospital visit rate across illness categories. We use
the ten-day lagged cyclones that are 500 miles distant from ports as the instrumental vari-
able in our baseline specification.® Since the instrumental variable specification is similar

to the one used in the main text, we do not present the results for instrument validity checks.

®We use the ten-day lagged cyclones here instead of the seven-day lagged ones in the main text because
the ten-day lagged cyclones show a stronger correlation in the first stage.
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Table C.1 presents the first-stage relationship between the cyclone instrument and vessel
tonnage in ports across samples. The point estimate is statistically significant, suggesting
the cyclone instrument leads to a 3-4% reduction in vessel tonnage in ports. The first-stage
F statistics are in a range of 22-23, which are above the threshold of ten, suggesting no

evidence of weak instruments.

Table C.1: First-stage results of the effect of tropical cyclones on vessel tonnage

Dependent variable: vessel tonnage

Overall Black White
@ &) ®)
Tropical Cyclone -0.38™ -0.39™ -0.31
(0.08) (0.08) (0.07)
First-stage F Stat. 22.04 21.89 22.54
Adjusted R? 0.74 0.73 0.78
Observations 1,805,287 887,300 1,679,994

Notes: This table presents the first-stage results of the instrumental variable estimation in Table C.2. The
instrument is a dummy of ten-day lagged and 500-mile distant cyclones from ports. All regressions include a
set of weather controls, such as the quadratics of maximum, minimum, and dew point temperatures, precipi-
tation, wind speed, and relative wind direction between a zip code-port pair. All regressions also include
county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. Standard errors are clus-
tered by zip code-port pair and day. Estimates are weighted by zip code-specific population. Significance
levels are indicated by *** 1%, ** 5%, and * 10%.

Table C.2 presents the instrumental variable estimation for the effect of vessel tonnage
on hospital visits across seven illness categories. Most estimates associated with respiratory
illnesses shown in columns (1)—(3) are statistically significant. They show that a 100,000 Mt
increase in gross vessel tonnage in a port results in an additional 15.19 hospital visits per
million residents related to all respiratory illnesses for the overall population, 35.59 hospital
visits per million Black population, and 10.33 hospital visits per million White population.
These results provide additional evidence that vessels in ports can contribute to racial
disparities in respiratory-related health outcomes. However, the estimates associated with
psychiatric and heart illnesses have surprising signs, and they are either statistically signifi-
cant at the 5-10% level or insignificant. We do not see strong results related to psychiatric
and heart illnesses, probably because the composition of air pollutants co-emitted from

vessels together may not cause mental and heart illnesses.
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Table C.2: Effect of vessel tonnage on contemporaneous hospital visit rate in California
port areas, instrumental variable estimation

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric
@ 2) ®) 4) ®) (6)
Panel A: Overall population
Vessel Tonnage 1.82* 541" 15.19* -0.30 -1.10° -2917
(0.80) (1.38) (3.74) (1.40) (0.60) (1.56)
Adjusted R? 0.38 0.26 0.40 0.35 0.21 0.39
Observations 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287
Panel B: Black
Vessel Tonnage 7.08" 9.79™ 35.59™ -0.80 -2.07 —9.34™
(3.51) (3.02) (10.97) (3.41) (1.40) (4.10)
Adjusted R? 0.16 0.08 0.19 0.13 0.05 0.18
Observations 887,300 887,300 887,300 887,300 887,300 887,300
Panel C: White
Vessel Tonnage 1.24 2.34™ 10.33* -0.61 -1.43 —4.22
(1.12) (0.83) (3.41) (2.82) (1.22) (3.06)
Adjusted R? 0.17 0.09 0.32 0.28 0.15 0.32
Observations 1,679,994 1,679,994 1,679,994 1,679,994 1,679,994 1,679,994

Notes: This table presents the instrumental variable estimation of the effect of vessel tonnage on the contem-
poraneous hospital visit rate. Each column presents an individual regression on an illness category. The
endogenous variable, log of vessel tonnage, is instrumented by the dummy of ten-day lagged and 500-mile
distant cyclones from ports. All regressions include a set of weather controls, such as the quadratics of
maximum, minimum, and dew point temperatures, precipitation, wind speed, and relative wind direction
between a zip code-port pair. All regressions also include county-by-year, month, day-of-week, holiday, and
zip code-port pair fixed effects. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.

Tables C.3 shows the OLS estimates for the effect of vessel tonnage on hospital visits.

The estimates for respiratory illnesses become insignificant for the Black population. They

are also much smaller than the corresponding instrumental variable estimates, suggesting

potential bias. The OLS estimates associated with psychiatric and heart illnesses are

positive, but they are with small magnitudes.
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Table C.3: Effect of vessel tonnage on contemporaneous hospitalizaton rate in California

port areas, OLS estimation

Dependent variable: hospital visits/million residents

Respiratory Heart Psychiatric
Upper All All All
Asthma Respiratory ~ Respiratory Heart Anxiety Psychiatric
@) 2) ®) 4) ®) (6)
Panel A: Overall population
Vessel Tonnage 0.06 0.06 0.38™ 0.21 0.08™ 0.19
(0.03) (0.05) (0.14) (0.06) (0.02) (0.06)
Adjusted R? 0.39 0.34 0.47 0.35 0.22 0.40
Observations 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287 1,805,287
Panel B: Black
Vessel Tonnage 0.03 0.18 0.49 0.67" 0.04 0.11
(0.14) (0.12) (0.36) (0.17) (0.07) (0.17)
Adjusted R? 0.17 0.10 0.23 0.13 0.05 0.19
Observations 887,300 887,300 887,300 887,300 887,300 887,300
Panel C: White
Vessel Tonnage 0.18™ 0.01 0.717 0.81 0.31 0.78™
(0.05) (0.03) (0.14) (0.12) (0.05) (0.13)
Adjusted R? 0.17 0.09 0.34 0.28 0.15 0.32
Observations 1,679,994 1,679,994 1,679,994 1,679,994 1,679,994 1,679,994

Notes: This table presents the OLS estimation of the effect of vessel tonnage on the contemporaneous
hospital visit rate. Each column presents an individual regression on an illness category. All regres-
sions include a set of weather controls, such as the quadratics of maximum, minimum, and dew point
temperatures, precipitation, wind speed, and relative wind direction between a zip code-port pair. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed
effects. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the
zip code-specific population. The first-stage F statistics range from 22 to 23. Significance levels are
indicated by *** 1%, ** 5%, and * 10%.

C.4 Relationship between Racial Health Gap and Health and Economic

Characteristics

To explore the correlates of racial health disparities, we collect local public health and

economic characteristics by race at the zip code or county level from multiple sources.

Health characteristics

The county-level health characteristics are obtained from the

Annual Survey Data of the Behavioral Risk Factor Surveillance System (BRFSS) from the
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Centers for Disease Control and Prevention.” BRFSS is a survey that collects information
on chronic health conditions and health behaviors, conducted every year via telephone
across the US We collect data for the period 2003-2012, where county-level responses are
available. We focus on the counties where the zip codes within 25 miles of the major
California ports are located. An observation in the final dataset is county-year.

We calculate the race-specific smoking rate in each county as the share of survey
respondents who report smoking “every day” or “some days” to the total number of
respondents in the race group. We calculate the poor or fair health status rate as the percent
of respondents who report their general health as “poor” or “fair.” We also calculate the
obesity rate in each county as the share of survey respondents who have a body mass
index 30 or above. Lastly, we calculate the no exercise rate in each county as the share of
respondents who did not participate in exercises other than regular jobs during the past
month. We then plot the distributions of each calculated health characteristic separately
for Blacks and Whites, as shown in Figure C.2(a). The results demonstrate that Blacks

tend to have worse health conditions than Whites, implying worse baseline health for Blacks.

Economic characteristics We obtain zip code-level economic characteristics data from
the American Community Survey (ACS) 5-Year Data from US Census Bureau for the period
2012-2016.8 An observation in the final dataset is zip code-year.

The race-specific poverty rate characteristic in each zip code is calculated as the percent
of the population who have income in the past 12 months below the poverty level to the
total population of the race group. We calculate the no health insurance rate as the share
of the population who do not have health insurance coverage. We measure income as per
capita inflation-adjusted to the data year dollar. We calculate the bachelor’s degree rate as
the percent of the population who have a bachelor’s degree or above.

Similarly, we plot the distributions of each calculated economic characteristic separately
for Blacks and Whites. Figure C.2(b) shows that Blacks have worse socioeconomic status
than Whites, which may make them more vulnerable to deal with health risks from
pollution exposure.

We also estimate the correlations between the Black-White health gap and the considered

economic characteristics by running the following regression:

yit = Xbir + Xwir + ey,

"Data were downloaded from https:/ /www.cdc.gov/brfss/annual_data/annual_data.htm (December
26,2021).
8We use the R package “tidycensus” to get access to the data.
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where y;; is the difference of average daily hospital visit rate between Blacks and Whites
for zip code i in year t. X bz-p is an economic characteristic for Blacks, standardized
to its mean and standard deviation, while Xw;, is the corresponding standardized
economic characteristic for Whites. We run the regression separately for each economic
characteristic. Figure C.2(c) presents the estimated coefficients and 95% confidence intervals,

showing correlations between the Black-White health gap in port areas and the economic

characteristics.
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Figure C.2: (a) Distributions of local health characteristics by race. (b) Distributions of
local economic characteristics by race. (c) Relationship between Black-White health gap
and standardized economic characteristics.

Notes: Panel (a) presents the distributions of county-level health characteristics. Panel (b) shows the
distributions of zip code-level economic characteristics. Panel (c) demonstrates the relationship between
the Black-White health gap and economic characteristics. The Black-White health gap is measured as the
difference of annual average daily hospital visit rates between Blacks and Whites. The economic characteristics
in Panel (c) are standardized to their means and standard deviations. Error bars in Panel (c) correspond to
95% confidence intervals. The health characteristics data are from the Annual Survey Data of the Behavioral
Risk Factor Surveillance System from the Centers for Disease Control and Prevention. The economic
characteristics data are obtained from the American Community Survey (ACS) 5-Year Data from US Census
Bureau. The hospital visit rates are calculated based on data from the Office of Statewide Health Planning
and Development of California.
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D National Energy Modeling System (For Online Publica-

tion)

The National Energy Modeling System (NEMS) is an integrated energy-economy modeling
system developed by EIA. A 2017 version of NEMS is currently hosted on a server at Yale
University, and we call it Yale-NEMS at EIA’s request. Yale-NEMS comprises 13 modules
comprehensively modeling major energy supply sectors, conversion sectors, demand
markets, macroeconomics, and international energy markets. The model simulates energy
markets out to 2050 subject to a comprehensive set of constraints, such as economics, tech-
nological advancement, demographics, resource availability, and behavior assumptions.
The model also includes current energy and environmental policies at the state and federal
levels, while it does not consider any proposed rule-makings. Model projections include
energy consumption, production, trade, prices, and emissions.

Since we are particularly interested in the effects of shore-side energy consumption
and its interaction with the power sector, this appendix discusses how Yale-NEMS models
marine fuel consumption and electricity generation. The description of other modules is
available at EIA (2009). We first introduce the reference case of Yale-NEMS, which we use
as the baseline for our analysis.

D.1 Annual Energy Outlook

We take Annual Energy Outlook (AEO) 2017 as the reference case. AEO 2017 is a reg-
ular update of the US energy market outlook, released in early 2017 by EIA. The series
of AEOs have been widely referenced for decision makings by government agencies,
academia, and private sectors for decades. AEO 2017 projects a time path of key US
energy market indicators from present to 2050 EIA (2017a). Comparing to previous annual
outlooks, AEO 2017 includes two reference projections, one including the Clean Power
Plan (CPP) and the other excluding it. Because the CPP is much less stringent than its origi-
nal form, in this study, we use AEO 2017 without the Clean Power Plan as the reference case.

While AEO 2017 is a few years old, electricity generation in the United States has only
become cleaner since 2017. Thus, if our simulation results are biased in any direction, they
would be biased towards overestimating the air pollution from electricity consumption. This
suggests that using AEO 2021 would only strengthen our results that the California port

electrification regulation reduced air pollution emissions on net.
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D.2 Marine Energy Consumption

In Yale-NEMS, the transportation demand module projects transit and auxiliary fuel
consumption by marine vessels, within the US Emission Control Area—the areas within
200 nautical miles of the US coast and outside ECA EIA (2016).

Yale-NEMS models the marine fuel consumption by vessel type (tanker, container,
gas (LPG/LNG), roll-on/roll-off, bulk, and general cargo) within the ECA in three steps,
as is discussed in great detail in EIA (2016). First, the model estimates the total energy
consumption in a base year (2013) based on historical data. From the base year, the model
then determines the projections of energy demand in future years by several factors: fleet
turnover rate—representing the rate of new vessels entering a fleet moving through ECA,
marine fuel efficiency improvement, and industrial output—accounting for economic
growth. Third, the model splits total energy consumption into four fuel types, including
distillate oil, residual oil, CNG, and LNG, based on fuel price changes using a logit model
specification.

EIA’s NEMS does not explicitly model port-side electricity consumption and we add
this feature to Yale-NEMS. First, we obtain historical data on vessel visits connected to
onshore electricity and compare them to the total number of visits, which provides us
the approximate percentage of energy consumption from electricity by year and region.
For future years, we assume the same proportion of using electricity from 2016. We also
incorporate the California Ocean-Going Vessel At-Berth Regulation (see Section 6.1 for
details). Second, since we know the total fossil fuel consumption in ECA, we calculate
the total electricity consumption based on the calculated percentages, constituting the
reference shore-side electricity consumption in the model. Third, we subtract the newly
added marine electricity demand from the total commercial electricity demand. Thus the
total electricity demand across sectors is still comparable to the AEO 2017 base projections.
Fourth, we calculate the reference emissions from vessels by applying the emission factors

by engine type (transit and auxiliary) and fuel type to total fuel consumption.

D.3 Electricity Generation

The Electricity Market Module (EMM) in Yale-NEMS explicitly models the US electricity
market and its interaction with other energy markets EIA (2017b). The module is at the
North American Electric Reliability Corporation (NERC) region level. In each modeling
year, other interrelated modules pass critical parameters to the EMM, including electricity
demand from the four end-use demand modules (commercial, industrial, residential, and

transportation demand), input fuel prices from the fuel supply modules (coal, natural gas,
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and fuel oils), and macroeconomic expectations from the macroeconomic module. The
EMM then makes production decisions by choosing a fuel mix to generate electricity to
meet demand cost-efficiently with perfect foresight.

The outputs from the EMM include electricity quantities and prices, input fuel consump-
tion, emissions, and capital investment for additional capacity, which are then all returned
to the related modules. Several factors determine the total emissions from generating
electricity, including emission factors across energy types and mitigation technologies. The
model iterates until market equilibrium achieves. The electricity consumption from ports is
linked to EMM. When there is electricity incurred by vessels, the demand is received by the
EMM, and then the EMM generates electricity to meet such demand most economically.

Yale-NEMS only reports emissions of SO, and NOy from the power sector. To evaluate
PM; 5, we use an approximation approach similar to Gillingham and Huang (2019, 2020).
First, we calculate the base year (2014) PM; 5 emissions from power plants based on the
EPA 2014 National Emissions Inventory (NEI) data and obtain the energy consumption
from Yale-NEMS in the same year. Second, we extrapolate the emissions after 2014 as a

constant proportion of energy consumption.

D.4 Shore Power Scenario

We construct a shore power scenario, in which all US ports implement shore power for
auxiliary engines of vessels. Specifically, we allow auxiliary fuels (e.g., distillate oil, residual
oil, and natural gas) consumed by vessels to be gradually replaced by electricity generated
by power plants from 2020 to 2025, and after 2025 all auxiliary engines are powered by
electricity. The fuel switch follows the following linear adjustment:

oy _t=2019 )
970 =\* ~ 2025 = 2019 ) 11+’

t —2019
et = 3005 = 20192 Tr

where q?/t represents the consumption of auxiliary fuel f by vessels in ports in year ¢
(t < 2025) in the reference case and g is the adjusted fuel consumption in the Shore
Power scenario. g, is electricity consumption by vessels in ports switched from fossil
fuels. From the year 2025 onwards, fossil fuels consumed by auxiliary engines are entirely

replaced with electricity, as represented in the following:
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We run the reference case and the Shore Power scenario individually in Yale-NEMS.
We then compare the emissions results between the two cases, and the differences indicate

the effect of implementing shore power in ports.
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