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Aerosols, tiny suspended solid or liquid particles in the atmosphere, are important drivers

of atmospheric processes. Aerosols affect the climate as well as local weather by modu-

lating the Earth’s energy budget. Previous studies have quantified the impact of aerosols

on global climate change, with a focus on the atmospheric radiation budget. However,

aerosols have a disproportionately higher impact on the Earth’s surface, where we reside.

This dissertation isolated this impact of aerosols on the surface climate to better understand

the mechanisms that modulate the overall climate response to aerosol loading.

This work developed a surface energy budget perspective to aerosol-climate interac-

tions and quantified the impact of aerosols on surface climate through both radiative and

non-radiative pathways. The relative strengths of these pathways depend heavily on both

aerosol and land surface properties. Thus, a major emphasis of the dissertation was to in-

vestigate the impact of aerosols on the surface energy budget tied to differences in regional

aerosol loading and land cover. The research methodology combined data analysis, remote

sensing, atmosphere modeling, and land-surface modeling. Both reanalysis datasets with

assimilated aerosol observations and atmosphere model runs with radiation diagnostics

were used to separate the impact of aerosols on surface climate through the shortwave and

longwave radiative effects. To capture the impact of aerosols on surface climate through

non-radiative pathways, a global land model was run with and without aerosols. In both

cases, a conceptual framework to attribute surface temperature anomalies to its determi-

nants was used to examine the relative impact of each pathway on the local surface tem-

perature. The associated impacts on terrestrial evapotranspiration and land carbon uptake



2

were also quantified on a global scale using land model runs. Finally, given the impor-

tance of diffuse radiation of sunlight on surface processes, a comprehensive evaluation of

gridded diffuse radiation in current-generation global products was undertaken. To cor-

rect some of the observed biases in these gridded products, a supervised machine learning

algorithm was trained to develop a global bias-corrected radiation dataset for future land

modeling.

Aerosols lead to one of the largest uncertainties in both diagnostic and prognostic cli-

mate simulations. This dissertation advances our understanding of the biophysical mech-

anisms through which aerosols can impact surface temperature, terrestrial evapotranspira-

tion, and land carbon uptake. It also provides a broader perspective on the importance of

the diffuse radiation fertilization effect and the current uncertainties in its representation

in Earth System Models.
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Chapter 1

Introduction

1.1 Research Background

The principal constituents of the Earth system - the atmosphere, the ocean, and the land -

show great non-linearity in their interactions (Suni et al., 2015). The interaction between

the land and the atmosphere is particularly variable due to the heterogeneity of the land

surface (as opposed to the ocean surface). The effect of these interactions on the climate

has received much attention in recent years (Seneviratne & Stockli, 2008). In climate and

numerical weather prediction models, these interactions determine the lower boundary

conditions for the model domain.

The sun’s radiation warms the Earth’s surface and the net absorbed energy is parti-

tioned into the turbulent fluxes - sensible heat flux and latent heat flux - and ground flux,

collectively representing the surface energy balance (Eq. 1.1) (Trenberth et al., 2009).

Studies have shown that the heterogeneity of the Earth’s land surface makes the feedback

between land use and the turbulent fluxes dynamic in space and time (Giorgi & Avissar,

1997; Pielke, 2001; Suni et al., 2015), which, in turn, affects local and regional weather

and climate.

The basic surface energy balance is formulated as:
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K↓ + L↓ −K↑ − L↑ = H + λE +G (1.1)

The terms on the left-hand side comprise the net radiative flux (Rn) received by the

surface, where K↓ is the incoming shortwave radiative flux, L↓ is the incoming longwave

radiative flux, K↑ is the shortwave radiative flux reflected by the surface, and L↑ is the

longwave radiative flux emitted by the surface. H is the sensible heat flux and represents

the turbulent transfer of heat from the surface to the atmosphere. λE is the latent heat flux

or the transfer of moisture from the surface to the atmosphere and G is the ground flux -

the energy being transmitted from the surface into the deeper soil layers.

1.1.1 Aerosols: Properties and Impacts

Aerosols are tiny suspended liquid or solid particles that have natural or anthropogenic

origins. Naturally, aerosols can be mineral dust (from re-suspension of dust from deserts),

sea salt (from sea spray), organic compounds (from forest fires and biogenic emissions),

sulphates (from volcanic eruptions), etc. Anthropogenic aerosols can form due to biomass

burning, industrial emissions, vehicular emissions, etc. Ultrafine aerosols (<0.01 µm)

can be formed by nucleation, or condensation of gaseous pre-cursors. These gradually

grow through coagulation into fine aerosols (0.01 - 1 µm) and can then be scavenged by

precipitation. The coarser particles (1-10 µm) can be formed due to continued coagulation

or due to mechanical re-suspension of dust or evaporation of water droplets. Based on

size and chemical nature, aerosols have a wide variety of impacts on both atmospheric

processes and human health (Hinds, 1999).

Aerosols interact with radiation in a multitude of ways. These can be grouped into

two main processes: scattering and absorption. If, after interaction, the light is re-radiated

in the same wavelength, it is termed as scattering. On the other hand, if the light has a
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shift in wavelength, it is usually due to absorption. Scattering by a single aerosol particle

depends on its size, shape, refractive index, as well as the wavelength of the incident light.

For studying earth system processes at synoptic scales, the interactions between aerosol

particles and radiation are usually quantified by their bulk properties.

For the atmospheric column, the extinction due to aerosols is given by the Aerosol

Optical Depth (AOD), which is:

τ =

∫ TOA

SFC

kedz (1.2)

Here τ is the AOD, SFC is the surface (z=0) and TOA is the height of the top of the

atmosphere. ke is the extinction coefficient, which is wavelength dependent.

The intensity of radiation of a particular wavelength reaching the surface is then given

by:

I = I0e
−τ (1.3)

where I is the direct radiation intensity received by the surface and I0 is the TOA radiation.

Aerosol Radiative Effects

As indicated by Eq. 1.3, aerosols can affect the temperature of the surface and near-

surface by modifying the radiation received by the planet. The modification of the radiative

balance is also termed as radiative effect (or radiative forcing when considering only the

anthropogenic contribution). A positive radiative effect means that more radiative flux is

being absorbed by the atmosphere or the surface compared to a standard atmosphere or

surface, while a negative radiative effect means that less radiative flux is being absorbed.

The influence of aerosols on the radiative effect can be divided into two main categories:

the direct effect and the indirect effect. Aerosols can directly influence both the incoming
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solar radiative flux (K↓) and the terrestrial radiative flux through absorption and scattering.

This is known as the direct radiative effect of aerosols. Aerosols also affect the formation

of clouds, their size and longevity. Since clouds can also interact with the radiative balance

of the Earth, this is known as the indirect radiative effect of aerosols.

The Direct Radiative Effect

Aerosols reduce the incoming K↓ from the sun by either scattering it or absorbing it. The

ratio of scattering and absorption depends mainly on the concentration, type and vertical

profile of aerosols (Forster et al., 2007; Spencer et al., 2008; Boucher et al., 2013). The

aerosol-induced longwave radiative effect can be positive - the opposite sign of the short-

wave radiative effect (Alizadeh-Choobari et al., 2013) - and depends strongly on particle

size (Miller et al., 2006). The relative importance of the direct shortwave and longwave

radiative effects depend on aerosol composition. Industrial aerosols (nitrates and sulfates)

induce stronger shortwave radiative effect than longwave radiative effect (Haywood et al.,

1997; Liao et al., 2004). On the other hand, mineral dust has been shown to have high

longwave radiative effect (Hansell et al., 2012; Sicard et al., 2014). Overall, this leads

to a change in both the atmospheric and the surface radiative balance. Together, anthro-

pogenic and natural aerosols partially offset the global warming caused by greenhouse gas

emissions (Solomon, 2007). However, there are regional differences, with black carbon

aerosols warming the atmosphere (Ramanathan & Carmichael, 2008) and sulfate aerosols

cooling it (Bellouin et al., 2005; Andreae et al., 2005), though the strength of this cooling

is debatable (Harris et al., 2013). Most studies have determined the radiative effect of

aerosols at a global scale. However, there are still significant uncertainties at the regional

and local scale, where much of the research has been done in recent years (Yu et al., 2001;

Verma et al., 2006; Wendisch et al., 2008; Mickley et al., 2012; Han et al., 2012; Zhang et

al., 2012).
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Except for dust and sulfate aerosols, the direct K↓ radiative effect dominates the direct

L↓ radiative effect (Haywood et al., 1997, 2003; Liao et al., 2004). A global modeling

study on K↓ and L↓ aerosol forcing found that the L↓ forcing is non-negligible and may

be important to reduce uncertainties in climate projections (Reddy et al., 2005). Another

modeling study over Australia found that the positive longwave radiative effect due to

dust can offset a large portion of the shortwave radiative effect in arid climate (Alizadeh-

Choobari et al., 2013). The ratio of the shortwave and longwave radiative effect also has a

significant diurnal component. Although shortwave radiative effect may dominate during

the day (and on an annual basis), it is not present at night. Given the opposite signs of

the two forcings and their diurnal asymmetry, the impact of the aerosol-induced longwave

radiative effect is non-negligible for accurate prediction of the diurnal temperature range.

A recent study (Cao et al., 2016) on the attribution of causes to the UHI in China found that

the nighttime UHI may be enhanced by L↓ forcing due to aerosols. Thus, it is important to

disentangle the two components of the aerosol-induced radiative effect and examine how

their ratio varies diurnally for different aerosol types, especially at the local and regional

scale.

The Indirect Radiative Effect

The indirect effect of aerosols on radiation is manifold and dependent on the interaction

of the aerosols with clouds. The major known interactions are:

• The increased reflection of solar radiative flux by clouds, known as the cloud albedo

effect or the Twomey effect (Twomey, 1977)

• Prolongation of cloud lifetime by delaying precipitation, known as the cloud lifetime

effect (Albrecht, 1989)

• Increase in ice nuclei in mixed-phase clouds, which leads to higher precipitation, as
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well as radiative effect, known as the glaciation indirect effect (Lohmann, 2002)

• Delay in freezing of clouds due to smaller droplet size, known as the thermodynamic

effect (Matsui et al., 2004)

There are currently significant uncertainties in each of these interactions, particularly

in the context of radiative effect (Stocker et al., 2013). Although both the cloud albedo

effect and the cloud lifetime effect reduce the incoming radiative flux for both the top of

the atmosphere and the surface, the magnitude of reduction depends strongly on the type

of cloud and its lifetime. There is also some evidence that aerosols may reduce the lifetime

of clouds, for instance, in case of non-precipitating cumulus clouds (Small et al., 2009).

Although there is significant observational basis of the aerosol indirect effects on cloud

formation (Ramanathan et al., 2001b; Schwartz et al., 2002; Feingold et al., 2003; Kim et

al., 2003; Ackerman et al., 2015), the radiative effect due to the indirect effects is hard to

quantify (Shao & Liu, 2005). Of the few studies done, one looked at the indirect effect of

Saharan dust aerosols on warm clouds and found an indirect K↓ forcing of 29.88 ± 2.42

W m-2 per Aerosol Optical Depth (AOD). A study on the L↓ indirect effect due to aerosols

for Arctic clouds found a climatologically significant surface forcing of 3.4 W m-2 (Lubin

& Vogelmann, 2006). Further studies are required on the effect of different aerosols on

different types of clouds in various moisture regimes to reach a scientific consensus and

hopefully reduce uncertainties in future model projections.

Semi-Direct Effect and Impact on Turbulent Fluxes

There is another group of less studied climatological impacts of aerosols known as the

semi-direct effect. The absorption of solar radiative flux by aerosols may lead to a re-

duction in ambient precipitable water vapor and cause evaporation of clouds, leading to

positive radiative effect at the surface (Johnson et al., 2004). Aerosols can also affect
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the surface energy budget by influencing the evapo-transpiration from vegetated surfaces

(Matsui et al., 2008; Wang et al., 2008). In general, we do not fully understanding the

mechanisms involved in the semi-direct radiative effect due to aerosols at different scales

(Johnson, 2003).

Aerosols can also change the diffuse radiation (K↓,d), as well as the fraction of dif-

fuse radiation (kd), received by the surface through scattering (Liepert and Tegen, 2002).

The higher K↓,d allows the sunlight to penetrate the dense canopy and illuminate normally

shaded leaves. This impacts ecosystem response, primary productivity, and evapotranspi-

ration (ET) (Niyogi et al., 2004; Mercado et al., 2009) and is known as the diffuse radiation

fertilization effect. Thus, other than reducing the incoming radiation at the surface (Zhang

et al., 2011), aerosols can also affect the turbulent transfer of heat and moisture (Wang et

al., 2008; Urankar et al., 2012).

Previous modeling studies have shown that aerosols, through the diffuse radiation fer-

tilization effect, tends to increase the evaporative fraction, and thus decrease the ratio of

the sensible and latent heat fluxes, also known as the Bowen ratio (β) (Wang et al., 2008;

Pere et al., 2011; Urankar et al., 2012). Liu et al. (2014) compared the impact of aerosols

at a global scale onH and λE and found a proportionally greater decrease inH than would

result from just the negative radiative effect. Since the impact of K↓,d on photosynthesis

and transpiration rate depend on vegetation canopy characteristics (Knohl & Baldocchi,

2008), it follows that the aerosol-mediated change in β (∆β) would also be a function of

the land cover. The reduction in β due to aerosols has been found to be highest for tropical

and temperate broadleaf evergreen forests (Liu et al., 2014) and is positively associated

with the Leaf Area Index (LAI) (Matsui et al., 2008). Furthermore, solar radiation may

be absorbed or scattered forward, backward or uniformly depending on the chemical and

physical characteristics of the aerosol (Hinds, 1999). Thus, aerosol type has a significant

influence on how kd is affected (Cohan et al., 2002). Predominantly scattering aerosols like
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sulfate and mineral dust increase the proportion of K↓,d, while predominantly absorbing

aerosols like black carbon can slightly reduce it (Kvalevag and Myhre, 2007).

It should be noted that there have not been many systematic investigations of the

aerosol-β association over highly polluted regions for different aerosol types. Most impor-

tantly, while the impact of aerosols on the turbulent fluxes has been studied, no previous

work has examined how that could translate into reductions in surface temperature.

1.1.2 Asymmetric Aerosol Radiative Effect and Temperature Response

Aerosol radiative effect has disproportionately large regional and local impacts, which

cannot be captured by the top of the atmosphere radiative effect normally used as a metric

in climate studies. Unlike greenhouse gas-induced radiative effect, the impact of aerosols

on radiation is different for the surface (large and negative), the atmosphere (large and

positive), and the top of the atmosphere (small and negative) (Ramanathan et al., 2001a).

Moreover, the ratio of shortwave and longwave radiative effect also depends on the height

(Alizadeh-Choobari et al., 2013). For instance, as seen by Alizadeh-Choobari et al. (2013),

the TOA longwave forcing is around 4% of the TOA shortwave forcing. However, for the

surface, it is close to 20% and in the opposite direction, as in, longwave forcing at the

surface is positive, and negates part of the shortwave forcing. Finally, the sensitivity of

surface temperature response due to the radiative effect of aerosols is stronger than that

due to greenhouse gases (Marvel et al., 2016).

The scientific literature focuses on the top of the atmosphere radiative effect in the

context of climate change. However, when trying to elucidate the impact of aerosols on

the surface temperature, the surface radiative effect is more important, since the surface

temperature directly responds to the change in the incoming radiation at the surface. This

is especially true at the regional and local scale since the impact of aerosols on the sur-

face radiation and on the surface feedback through evaporation depend on aerosol type
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as well as land cover. Moreover, there is an implicit assumption in the literature that the

temperature sensitivity due to aerosol loading is predominantly due to the radiative effect.

Since the ecosystem also responds to the aerosol-induced increase inK↓,d, which generally

increases λE and evaporative cooling, this may not be a correct assumption.

1.1.3 Dearth of Observational Constraints on the Diffuse Radiation

Fertilization Effect

K↓,d remains a relatively understudied component of the Earth’s radiation budget. The K↓,d

fertilization effect, in particular, is poorly constrained by observations due to the dearth

of simultaneous measurements of K↓,d and turbulent fluxes across biomes. For instance,

only around 50 such sites exist in publicly accessible datasets, namely the FLUXNET

(Baldochhi et al., 2001) and AMERIFLUX (Novik et al., 2018) networks (sites shown in

Fig. 1.1). When I separate the observed Net Ecosystem Exchange (NEE) and λE into high

and low regimes of kd for different bins of total absorbed shortwave radiation, one can see

the expected trends, with both carbon uptake and evapotranspiration increasing for more

diffuse conditions (examples shown in Fig. 1.2). This pattern is consistently across most

of these sites (not shown).
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Figure 1.1: Global distribution of sites with simultaneous measurements of diffuse radia-
tion and turbulent fluxes.

However, many of these datasets only contain a couple of months of data, making it

hard to generate insights about the global contributions of this effect on the carbon and

water budget. Moreover, almost all of these stations are in the northern hemisphere, not

in tropical regions, where the K↓,d fertilization effect is expected to be stronger. Thus, our

main tool for estimating global impacts of this effect on terrestrial processes is land-surface

modeling.
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Figure 1.2: Observed latent heat flux and net ecosystem exchange under high and low
diffuse fraction regimes for the Renon FLUXNET site in Italy.
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1.2 Research Objectives and Dissertation Outline

In my dissertation, I propose to develop a surface energy budget perspective to aerosol-

climate interactions and demonstrate that atmospheric aerosols can modify surface climate

through both the commonly studied radiative pathways and by enhancing surface evapo-

rative cooling.

This work aims to fill a gap in our scientific understanding of aerosols by isolating

the different mechanisms by which aerosols can change the surface temperature at the

regional and local scale. The focus is on both aerosol loading and land cover, such that the

combined contribution of shortwave radiative effect, longwave radiative effect, and ∆β

can be quantified for different ecosystems. In particular, the effect of aerosol-induced β

modulation on the surface temperature has not been studied to the best of my knowledge,

which is a major gap in our understanding of aerosol influence on the surface energy and

carbon budgets. Since the diffuse radiation fertilization effect, one of the main mechanisms

by which aerosols can change β, is poorly understood, we discuss potential uncertainties

in accurately simulating this effect, both from the perspective of land and atmosphere

modeling.

The major objectives and phases of this study are:

- 1) Isolating surface climate response to the shortwave and longwave radiative effects

of aerosols

- 2) Isolating the impact of aerosols on surface temperature, terrestrial evapotranspi-

ration, and land carbon uptake through both radiative and non-radiative pathways

- 3) Examining and correcting biases in diffuse solar radiation in global data products

Chapter 2 deals with objective 1 and separates the surface temperature response to

aerosols through the shortwave and longwave radiative effects at global to regional scales
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for both day and night. This work incorporates the Modern-Era Retrospective analysis for

Research and Applications global reanalysis product (version 2; MERRA-2; Gelaro et al.,

2017) and using a conceptual surface energy budget framework (Lee et al., 2011).

Chapter 3 deals with objective 2 and expands on Chapter 1 by including both radia-

tive and non-radiative pathways in the diagnostic calculations. Since MERRA-2 does not

provide changes in turbulent fluxes due to aerosols, the latest versions of the Community

Atmosphere Model (CAM; Gettelman et al., 2019) and Community Land Model (CLM;

Lawrence et al., 2019) are run to calculate them. I also set up modeling experiments to sep-

arate the impact of global dimming and the diffuse radiation fertilization effect on surface

temperature, terrestrial evapotranspiration, and land carbon uptake.

Chapter 4 deals with part of objective 3. Here I compare the gridded diffuse radiation

and diffuse fraction among current-generation reanalysis and satellite-derived products

and against ground observations. I also examine the role of aerosols and clouds on long-

term trends and biases in diffuse and total incoming solar radiation in the gridded datasets,

particularly over Europe and China.

Chapter 5 addresses the biases found in Chapter 4 by testing different bias-correction

techniques for improving the accuracy of gridded datasets and developing a global monthly

bias-corrected diffuse radiation product using supervised machine learning.

Appendix A aims to better quantify the impact of urbanization on local climate by

developing a new automated algorithm to estimate surface urban heat island (UHI) inten-

sity using satellite remote sensing. The results from the algorithm are validated against

previous studies and implemented using over 16-years of satellite observations to create a

dataset of surface UHI for over 10000 urban clusters across climate zones. Till date, this

remains the most comprehensive quantification of the surface UHI intensity on a global

scale using a consistent methodology.

Appendix B uses the COVID-19 lockdown as a perturbation experiment to better un-
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derstand human-land-atmosphere coupling in the Indo-Gangetic Basin, one of the most

polluted and populated regions of the world. Using some of the methodologies and work-

flows developed in Chapters 1, 2, and 4, as well as Appendix A, this study provides

observational evidence of rural control on the UHI, and, more broadly, the strong human

influence on surface climate in this region.
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Chapter 2

Isolating Surface Climate Response to
the Shortwave and Longwave Radiative

Effects of Aerosols

Published as: Chakraborty, T., & Lee, X. (2019). Land cover regulates the spatial variabil-

ity of temperature response to the direct radiative effect of aerosols. Geophysical Research

Letters, 46(15), 8995-9003.
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2.1 Abstract

Aerosol impact on the surface temperature varies between the shortwave and the longwave

components of radiation, depends on the time of the day, and is modulated by underlying

biophysical processes. We disentangle these complexities by isolating the direct surface

shortwave and longwave radiative effects from a global reanalysis data product and calcu-

lating their spatially explicit climate sensitivities. Higher sensitivity is found for the long-

wave component and is driven by a combination of spatial variability of aerosol species

and biophysical control of the underlying surface. The opposing shortwave and longwave

effects reduce the global terrestrial mean diurnal temperature range by 0.47 K, with al-

most half the contribution in the regions of interest considered coming from aerosols of

anthropogenic origin. We also find evidence of trend in the local climate sensitivity in the

equatorial zone, possibly caused by deforestation. These surface processes can partially

explain why the climate forcing efficacy of aerosols exceeds unity.
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2.2 Introduction

The impact of aerosols is one the greatest uncertainties in our understanding of the Earth’s

climate system (Stocker et al., 2013). Aerosols modulate the Earth’s radiative budget,

either directly through scattering and absorption (Bellouin et al., 2005) or indirectly by

influencing the size and longevity of clouds (Li et al., 2011; Twomey, 1991). While sev-

eral methods can be used to estimate the perturbation to the radiative budget by different

forcing agents (Tang et al., 2019), the top of the atmosphere values are traditionally used

as a metric for temperature predictions in climate studies. This practice implicitly assumes

that the temperature response of the planet is independent of the forcing agent or location

of its emission source. While this is defensible for globally homogeneous forcing agents

such as well-mixed greenhouse gases, for forcing agents that have significant spatial vari-

ability, like land use change, this assumption is insufficient (Bright et al., 2017). Aerosols

also fall into this category, due to the significant horizontal and vertical variability of the

aerosol radiative effect (RE; Stuber et al., 2005). Because of these spatial heterogeneities,

particularly the higher concentration of aerosols over the Northern Hemisphere, the global

climate sensitivity to the radiative forcing (RF) of aerosols—the anthropogenic component

of the aerosol RE—is higher than to the RF associated with well-mixed greenhouse gases

(Hansen et al., 2005; Marvel et al., 2015; Rotstayn et al., 2015; Shindell, 2014).

Both the total aerosol RE (Ramanathan et al., 2001) and the relative roles of shortwave

and longwave RE depend on altitude (Choobari et al., 2013), aerosol composition, and

aerosol size (Hansell et al., 2012; Haywood et al., 1997; Sicard et al., 2014). Overall, the

shortwave RE (∆K↓) dominates the longwave RE (∆L↓; Haywood et al., 1997; Highwood

et al., 2003; Liao et al., 2004). However, ∆L↓ can offset a large portion of ∆K↓ in arid

and semiarid regions, where coarse-grained mineral dust aerosols are effective emitters of

longwave radiation in the atmospheric thermal window (wavelength 4–10 µm; Choobari
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et al., 2013).

Moreover, ∆L↓ exists during both daytime and nighttime unlike ∆K↓. Further com-

plicating the matter is the fact that the same RE can induce different surface tempera-

ture responses because the energy redistribution between the surface and the atmospheric

boundary layer varies between time of the day and with the biophysical attributes of the

underlying local surface.

Here we deploy the theory of the intrinsic biophysical mechanism (IBPM; Lee et al.,

2011) and an atmospheric reanalysis data product to disentangle these synergistic interac-

tions between the aerosol RE and the local biophysical processes. We aim (1) to quantify

spatial variations of the surface shortwave and longwave radiative effects under present

climate conditions, (2) to calculate the local surface temperature perturbations caused by

these effects, and (3) to discuss the contribution of surface-air exchange processes to the

long-term change in the climate efficacy of aerosols.

2.3 Methods

2.3.1 The IBPM Theory

The IBPM theory combines the surface energy balance equation with a one-source model

of the sensible heat flux to solve for the surface temperature (TS; Lee et al., 2011). This so-

lution expresses TS as a function of atmospheric forcing and energy redistribution between

the surface and the lower atmosphere

TS = Tb +
λ0

1 + f
(R∗n −G) (2.1)

where Tb is the background or blending-height air temperature, λ0 is the local intrinsic

climate sensitivity, f , a dimensionless energy redistribution factor, is a measure of the
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efficiency of energy dissipation between the surface and the atmospheric boundary layer,

G is ground heat flux, and R∗n is the apparent net radiation given by

R∗n = K↓(1− a) + L↓ − σT 4
b (2.2)

whereK↓ is the incoming shortwave, L↓ is the incoming longwave, a is surface albedo, and

σ is the Stefan-Boltzmann constant. The local intrinsic climate sensitivity is essentially the

longwave feedback derived by differentiating the Stefan-Boltzmann law and is given by

λ0 =
1

4 ∈ σT 3
b

(2.3)

Changes to TS are produced via perturbations to the energy redistribution and to the

forcing variables Tb and R∗n.

The aerosol direct effect changes TS by perturbing Tb, K↓ and L↓ at the surface, and

f . Differentiating Eq. 2.1, we obtain

∆TS = ∆Tb + ∆T − λ0
(1 + f)2

(R∗n −G) ∆f (2.4)

where ∆ indicates the perturbation signal. Perturbation to the energy redistribution factor

∆f can arise from changes in Bowen ratio as a response to more diffuse radiation under

polluted skies or from changes in land use that alters the surface roughness. ∆T can be

separated into the contributions from the aerosol surface ∆K↓ and ∆L↓ as

∆T =
λ0

1 + f
[(1− a)∆K↓ + ∆L↓] (2.5)

where the effective local climate sensitivity is given by

λ∗ =
λ0

1 + f
(2.6)
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Note that the local surface temperature perturbation (∆T ), when added to the back-

ground temperature change (∆Tb), gives the total surface temperature change (∆TS).In

this study, we estimate this ∆T from (1) ∆K↓ and ∆L↓ derived from the radiation diag-

nostics with and without aerosols and (2) f from the lowest level modeled temperature and

the reanalyzed surface energy balance variables (Bright et al., 2017; Lee et al., 2011) from

the Modern-Era Retrospective analysis for Research and Applications global reanalysis

product (version 2; MERRA-2; Gelaro et al., 2017).

2.3.2 Reanalysis Data Product

The MERRA-2 data are gridded at a spatial resolution of 0.625◦ by 0.5◦ for every hour.

In addition to standard meteorological variables and radiative fluxes under realistic con-

ditions, MERRA-2 calculates the diagnostic radiative flux by assuming no aerosols in the

atmosphere. The direct aerosol effect is then determined from these radiation fields. In

the case of the shortwave RE, ∆K↓ is the difference in K↓ between all-sky and polluted

conditions versus all-sky and clean conditions (Figs 2.3e and 2.3f). In the case of the

longwave RE, ∆L↓ is the difference in L↓ absorbed by the surface under all-sky and pol-

luted conditions versus clear-sky and clean conditions (Figs 2.3g and 2.4a). This hybrid

approach (all-sky for K↓ and clear sky for L↓) is used since MERRA-2 does not provide

all-sky incoming L↓ without aerosols.

Additionally, the MERRA-2 dataset is used to compute f by inverting Eq. 2.1

f =
λ0

TS − Tb
(R∗n −G)− 1 (2.7)

In this diagnostic calculation, Tb is the air temperature at the lowest model level (985

hPa), and all other variables are obtained from the suite of surface micrometeorological

variables produced by the reanalysis. The median f values for each year are calculated
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separately for daytime and nighttime for each grid. The annual mean values are averages

of the daytime and nighttime values weighted by the daytime and nighttime hours for each

grid. For all variables, data from the most recent decade (2008 to 2017) are used to produce

mean spatial patterns, and data from the full assimilation period (1980 to 2017) are used

to examine temporal trends.
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Table 2.1: Summary of mean and standard deviation of the estimated variables for the
world’s land surfaces and each climate zone for 2008-2017. Here f is the energy redis-
tribution factor (unitless), λ0 is the intrinsic climate sensitivity (in K W−1 m2), λ∗ is the
effective local climate sensitivity (in K W−1 m2), RE is the aerosol radiative effect (in W
m−2), ∆K↓ is the aerosol RE in the shortwave band (in W m−2), ∆L↓ is the aerosol RE in
the longwave band (in W m−2), ∆T is the temperature perturbation (in K), and ∆DTR is
the diurnal temperature range perturbation (in K).

Table T1. [Update]Summary of mean and standard deviation of the estimated variables for the world’s land surfaces and

each climate zone for 2008-2017.

Variable Global Equatorial Arid Temperate Snow Polar

Daytime (surface)

f 6.98 ± 2.53 13.25 ± 7.71 3.47 ± 1.14 7.75 ± 2.99 6.73 ± 1.74 5.12 ± 1.00

λ0 0.19 ± 0.02 0.16 ± 0.00 0.17 ± 0.01 0.18 ± 0.01 0.21 ± 0.01 0.22 ± 0.01

λ∗ 0.029 ± 0.007 0.015 ± 0.007 0.041 ± 0.009 0.022 ± 0.006 0.029 ± 0.006 0.037 ± 0.006

∆K↓ -16.40 ± 8.50 -18.31 ± 10.85 -24.94 ± 14.48 -17.40 ± 11.99 -9.62 ± 4.41 -6.44 ± 1.87

∆L↓ 1.01 ± 1.07 0.77 ± 0.82 2.25 ± 2.30 0.73 ± 0.75 0.26 ± 0.27 0.13 ± 0.14

∆T (to ∆K↓) -0.39 ± 0.24 -0.27 ± 0.24 -0.75 ± 0.47 -0.33 ± 0.28 -0.20 ± 0.12 -0.17 ± 0.08

∆T (to ∆L↓) 0.039 ± 0.048 0.015 ± 0.021 0.110 ± 0.119 0.018 ± 0.023 0.007 ± 0.009 0.005 ± 0.007

Nighttime (surface)

f 0.90 ± 0.32 0.73 ± 0.73 0.54 ± 0.27 0.62 ± 0.50 1.33 ± 0.62 1.02 ± 0.68

λ0 0.21 ± 0.03 0.17 ± 0.00 0.20 ± 0.02 0.20 ± 0.01 0.24 ± 0.02 0.27 ± 0.02

λ∗ 0.122 ± 0.025 0.115 ± 0.040 0.130 ± 0.023 0.132 ± 0.141 0.113 ± 0.034 0.146 ± 0.043

∆L↓ 0.99 ± 1.04 0.80 ± 0.84 2.26 ± 2.16 0.75 ± 0.75 0.25 ± 0.28 0.13 ± 0.15

∆T (to ∆L↓) 0.126 ± 0.131 0.105 ± 0.138 0.287 ± 0.269 0.107 ± 0.133 0.030 ± 0.042 0.018 ± 0.025

Annual (surface)

f 4.21 ± 1.41 7.53 ± 4.42 2.13 ± 0.66 4.50 ± 1.74 4.29 ± 1.12 3.26 ± 0.76

λ∗ 0.072 ± 0.013 0.061 ± 0.021 0.081 ± 0.012 0.072 ± 0.065 0.067 ± 0.018 0.087 ± 0.021

∆T -0.13 ± 0.06 -0.09 ± 0.08 -0.22 ± 0.10 -0.12 ± 0.10 -0.09 ± 0.05 -0.08 ± 0.03

∆DTR -0.47 ± 0.32 -0.36 ± 0.34 -0.93 ± 0.62 -0.42 ± 0.38 -0.22 ± 0.14 -0.18 ± 0.09

RE -7.94 ± 3.64 -9.17 ± 5.34 -11.25 ± 5.80 -8.74 ± 5.89 -5.01 ± 2.18 -3.39 ± 0.94

Daytime (top of atmosphere)

∆K↓ -2.99 ± 1.40 -4.85 ± 2.65 -2.73 ± 3.68 -5.12 ± 3.32 -1.88 ± 1.51 -0.34 ± 0.84

∆L↑ -0.29 ± 0.27 -0.23 ± 0.22 -0.67 ± 0.56 -0.19 ± 0.21 -0.09 ± 0.09 -0.05 ± 0.05

Nighttime (top of atmosphere)

∆L↑ -0.10 ± 0.07 -0.12 ± 0.09 -0.18 ± 0.14 -0.08 ± 0.07 -0.04 ± 0.04 -0.02 ± 0.02

Annual (top of atmosphere)

Land RE -1.43 ± 0.71 -2.46 ± 1.32 -1.04 ± 2.06 -2.65 ± 1.71 -0.96 ± 0.77 -0.15 ± 0.44

All RE (-0.89 ± 0.27) 2/27
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The global spatial pattern of daytime f (Fig. 2.1a) is broadly similar to the f map

given in Bright et al. (2017) for the period from 2001 to 2011. In Bright et al. (2017),

the f value was computed from a satellite- and surface-based observational dataset using

the same diagnostic equation (Eq. 2.7). Our global mean f of 4.21 (Table 2.1) compares

favorably to the global mean of around 3.67 reported in Bright et al. (2017). As expected,

f is lower for smooth surfaces and higher for rough surfaces. Due to the predominance of

forested (rougher) areas in tropical latitudes, the f value is much higher near the equator

than at other latitudes. A strong diurnal asymmetry exists in f , with much lower values at

night resulting from higher static stability and less turbulent mixing than during the day.
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Figure 2.1: Global spatial patterns of daytime a and nighttime c f (unitless) for 2008-
2017. Non-linear color maps are used to better visualize the spatial variations throughout
the world. The corresponding zonal characteristics are given in panels b (daytime f ) and
d (nighttime f ). The solid lines represent the zonal means, while the shaded regions show
standard deviations at each degree of latitude.

2.3.3 Isolating the Impact of Aerosols by Climate Zone

Given that we focus on the Earth’s land surfaces in this study, all global mean values,

unless specified otherwise, refer to the spatial means over the MERRA-2 grids that are

predominantly (>90%) land. To investigate the role of surface characteristics on aerosol-

surface interactions, we divide the world’s land surfaces into the Koppen-Geiger climate

classes, namely, equatorial, arid, warm temperate (henceforth, temperate), snow, and po-
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lar (Rubel & Kottek, 2010), representing five different regimes of surface characteristics

and atmospheric forcing (Fig. 2.2a). Regional mean values are computed from spatial

averaging within these regions of interest.
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Figure 2.2: a Distribution of Koppen-Geiger climate zones and regions of interest used in
this study and b comparison of contribution of different species to total AOD for MERRA-
2 and Street et al. (2009).

2.3.4 Contribution of Anthropogenic Aerosols to Radiative Effect

A second group of regions of interest are used to estimate the anthropogenic aerosol con-

tribution to the ∆T . They are the following: United States, South America, OECD Eu-

rope, Southern Africa, Russia, East Asia, South Asia, and South East Asia. These regions

are chosen based on a previous study, in which researchers ran the Goddard Chemistry,

Aerosol, Radiation, and Transport (GOCART) model using emission inventories for an-

thropogenic and natural aerosol sources and quantified the anthropogenic contribution to

the aerosol optical depth (AOD) for each aerosol species (Streets et al., 2009).

At the surface, changes in ∆K↓ are proportional to changes in AOD. Thus, for each

region of interest, the fractional contribution of anthropogenic aerosols to ∆K↓ is equal

to the fractional contribution of these aerosols to the total AOD. The anthropogenic AOD

fractions for these regions are taken from Streets et al. (2009).

The AOD calculated by MERRA-2 for the five main aerosol species (dust, sea salt,

sulphate, organic carbon, and black carbon) is in excellent agreement with the results of
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Streets et al. (2009; Fig. 2.2b), indicating broad consistence between MERRA-2 and

GOCART. The anthropogenic contribution to ∆T for aerosol RE (shortwave) is obtained

from Eq. 2.5 using anthropogenic ∆K↓.

To obtain the anthropogenic contribution to ∆L↓, we first convert the total assimi-

lated AOD at 550 nm from MERRA-2 to the AOD at 10,000 nm (roughly the middle of

the longwave wavelength band) for each aerosol species using the Angstrom power law

(Ångström, 1929);

AOD10000 = AOD550

[
10000

550

]Å
(2.8)

where Å is the Angstrom exponent for the wavelength-dependence of AOD for that species.

Of the five aerosol species, we assume that all sulphate, organic carbon, and black car-

bon aerosols originate from anthropogenic sources and that all dust and sea-salt aerosols

originate from natural sources. We then obtain the total fractional contribution of anthro-

pogenic aerosols to the total AOD at 10,000 nm. The anthropogenic contribution to ∆L↓

is the product of ∆L↓ and this AOD fraction. Strictly, Å is based on the AOD at two

wavelengths and is valid within the range bounded by the two wavelength values used.

For instance, MERRA-2’s Å is based on the AOD at 470 and 870 nm. Beyond this range,

linear extrapolation using Å can lead to uncertainties (Kedia & Ramachandran, 2009).

Moreover, some of the sulphate, organic carbon, and black carbon aerosols are produced

by natural sources. For these reasons, we consider our estimates of the anthropogenic

contribution to ∆L↓ to be upper bounds of the actual values. The overall results are not

affected by these simplifications because the anthropogenic ∆L↓ fraction is almost neg-

ligible, varying from 2% to 6% in the regions of interest, and consistent with previous

estimates (Stier et al., 2007).
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Figure 2.3: Global spatial patterns of daytime a and nighttime c apparent surface climate
sensitivity λ∗ (in K W−1 m2), daytime shortwave radiative effect RE (e ∆K↓; in W m−2),
nighttime longwave RE (g ∆L↓; in W m−2), daytime temperature perturbation ∆T due
to shortwave RE (in K) (i), and nighttime ∆T due to longwave RE (in K) (k) for 2008-
2017. Non-linear color maps are used to better visualize the spatial variations throughout
the world. The corresponding zonal characteristics are also given in panels b (daytime
λ∗), d (nighttime λ∗), f (daytime shortwave RE), h (nighttime RE), j (daytime ∆T ), and l
(nighttime ∆T ). The solid lines represent the zonal means, while the shaded regions show
standard deviations at each degree of latitude.
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2.4 Results

2.4.1 Local Temperature Response to Aerosol Direct Radiative Effect

The surface ∆K↓ is most negative over eastern China, North India, and western Africa

owing to high pollution and dust emissions (Fig. 2.3e). Due to the strong interaction be-

tween dust aerosols and L↓, the surface ∆L↓ shows large positive values over arid regions,

namely, the Sahara Desert, the Arabian Peninsula, northwestern China, and western India

(Figs 2.3g and 2.4a). In heavily polluted parts of eastern China and North India, the day-

time ∆L↓ is around 3.5 W m−2 or about 30% of the highest value found for Sahara Desert.

The global mean daytime ∆K↓ over land is -16.40 W m−2, or 16 times the magnitude of

the daytime (1.01 W m−2; Fig. 2.4a) and nighttime ∆L↓ (0.99 W m−2; Fig.2.3g). The

annual mean ∆K↓ over the whole planet (land + oceans) is -4.31 W m−2.
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Figure 2.4: a, Global spatial patterns of daytime surface longwave RE (∆L↓; in W m−2)
and c, global spatial patterns of daytime temperature perturbation ∆T to daytime long-
wave RE (in K) for 2008-2017. Non-linear color maps are used to better visualize the
spatial variations throughout the world. The corresponding zonal characteristics are given
in panels b (daytime ∆L↓) and d (temperature perturbation to daytime ∆L↓). The solid
lines represent the zonal means, while the shaded regions show standard deviations at each
degree of latitude.

The surface temperature response to aerosols is controlled by both the local RE and

the local climate sensitivity. The daytime local climate sensitivity λ∗ is highest over the
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arid and polar climate zones due to the lack of vegetation and is lowest in the equatorial

zone because high surface roughness promotes energy redistribution between the surface

and the lower atmosphere (Fig. 2.3a). We have already noted the high RE over the arid

zone. λ∗ is also high, implying that this zone is most sensitive to aerosol loading. The

presence of coarse mode aerosols that strongly affect L↓ over these regions, combined

with the overall higher surface reflectivity for K↓, leads to a stronger daytime sensitivity

to ∆L↓(0.039 K W−1 m2) than to ∆K↓ (0.024 K W−1 m2) when averaged over the Earth’s

land surfaces. The nighttime λ∗ is more than twice as much as the daytime value, indicat-

ing less turbulent mixing during this period and resulting in a much stronger temperature

response to the same RE than during the day. There is less variability in λ∗ among the

different climate zones at night than during the day (Fig. 2.3c). The mean surface climate

sensitivity to surface aerosol RE for the Earth’s land surface is 0.016 K W−1 m2, estimated

by dividing the global mean ∆T of -0.13 K with the global mean surface RE (including

both shortwave and longwave) of -7.94 W m−2 (Table 2.1). This local surface climate

sensitivity is more than an order of magnitude smaller than the global climate sensitivity

derived from radiative balance perturbations at the top of the atmosphere (Rotstayn et al.,

2015).

The IBPM calculation reveals highly variable but spatially coherent patterns of ∆T

across the world (Figs 2.6i, 2.6k, and 2.4c). These spatial patterns are largely controlled

by the spatial variabilities of ∆K↓ and ∆L↓ and are also influenced by local biophysical

processes. The global mean daytime ∆T over land is -0.39 K due to ∆K↓ and 0.04 K due

to ∆L↓, while the nighttime ∆T is 0.13 K due to ∆L↓. Regionally, the strongest response

is seen in the arid zone, with the daytime ∆T reaching around -2.3 K and nighttime ∆T

reaching 1.2 K. The zonal mean ∆T peaks at around 20◦N for both shortwave (-1.1 K)

and longwave (0.2 K in the daytime and 0.5 K during nighttime) due to the high climate

sensitivity (in the daytime; Fig. 2.3b) and the high RE (both daytime and nighttime, Figs
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2.3f, 2.3h, and 2.4b). Averaged over the 24-hr cycle, the aerosol direct RE reduces the

global surface temperature by 0.13 K during 2008 to 2017 (Table 2.1 and Fig. 2.5). In

some regions (like Australia), the nighttime warming due to ∆L↓ is large enough to almost

offset the daytime cooling due to ∆K↓ (Fig. 2.3).
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Figure 2.5: a, Global spatial patterns of 24-hour ∆T (in K) and b, the zonal characteristics
of 24-hour ∆T for 2008-2017. Non-linear color maps are used to better visualize the
spatial variations throughout the world. The solid line in panel b represents the zonal
mean, while the shaded regions show standard deviations at each degree of latitude.

2.4.2 Impact on the Diurnal Temperature Range and Anthropogenic

Contributions

The daytime cooling and nighttime warming will reduce the diurnal temperature range

(DTR) (Huang et al., 2006; Sarangi et al., 2018). Although this aerosol DTR effect is

known conceptually for some time, we lack a detailed assessment of its geographic varia-

tion and a quantitative attribution of anthropogenic and natural contributions. Here we find

that unsurprisingly, the highest reduction in DTR (around 3 K) occurs over arid regions
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with high aerosol loading (Fig. 2.6). In the Amazon basin, because the effective climate

sensitivity is low (daytime λ∗ = 0.0075 K W−1 m2), aerosols have little impact on DTR

(around -0.09 K) even though ∆K↓ and ∆L↓ are moderately strong, at -10.55 and 0.28

W m−2, respectively. For comparison, similar REs (∆K↓ = -9.56 W m−2; ∆L↓ = 0.44 W

m−2 ) cause a larger reduction in DTR (-0.27 K) in Australia, where smooth landscapes,

which are not efficient at dissipating heat from the surface to the atmospheric boundary

layer, enhance the climate sensitivity (daytime λ∗ = 0.0299 K W−1 m2).
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Figure 2.6: a, Global spatial pattern of changes in the diurnal temperature range (DTR;
in K) for 2008–2017, b, zonal mean change in DTR, and c, mean DTR change for each
region of interest due to all aerosols and only anthropogenic aerosols. Shaded regions in
panel b and error bars in panel c represent ±1 standard deviation.

Anthropogenic aerosols account for around 10% of the total global aerosol load (Hinds,

1999), but because they have higher scattering efficiencies than natural aerosols, they con-

tribute to almost half the AOD, thus disproportionately modulating the surface temperature

response. Averaged over the eight major regions of the world considered here, anthro-

pogenic aerosols reduce the surface K↓ by 8.2 W m−2 and increase the surface L↓ by

0.022W m−2 (Fig. 2.7) through their direct effect. The anthropogenic contribution to the

overall DTR reduction is highest for the Unites States at 68% and lowest for South Amer-

ica at 26%. Aggregating all the eight regions of interest, anthropogenic aerosols lead to

about 50% of the total DTR reduction (Fig. 2.6c).
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Figure 2.7: a, daytime shortwave RE (∆K↓), b, daytime temperature perturbation due to
shortwave RE, c, daytime longwave RE (∆L↓), d, daytime temperature perturbation due
to longwave RE, e, nighttime longwave RE (∆L↓), f , nighttime temperature perturbation;
g, total RE at the surface, and h, 24-hour mean temperature perturbation for 1980-2006.

2.4.3 Inter-annual Trends

Globally, the ∆T becomes more negative at a rate of -0.014 K per decade in the daytime

for shortwave and more positive at a rate of 0.002 K (daytime) and 0.006 K (night) per

decade for longwave, from 1980 to 2017 (Fig. 2.8). The combined effect is a decrease
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of the global DTR by -0.018 K per decade (Fig. 2.9). The primary driver of these global

temperature trends is the strengthening of the aerosol RE over time. The mean ∆K↓ and

daytime (nighttime) ∆L↓ are -16.4 and 1.01 (0.99) W m−2 in 2008–2017, respectively,

compared to -14.6 and 0.88 (0.88) W m−2 in 1980–1989. Note that the differences in

the first and last 10-year means are muted due to aerosol loading caused by the volcanic

eruption of El Chichón in 1982. Of the five climate zones (Figs 2.8 and 2.10 to 2.13),

the temperate zone experiences the largest percentage change between the first and last 10

years for ∆K↓ (22%) and ∆L↓ (44% during day, 50% at night).

8/8

Figure 2.8: Long-term trends in a, daytime apparent surface climate sensitivity λ∗, b
nighttime λ∗, c daytime surface shortwave RE (∆K↓), d nighttime surface longwave RE
(∆L↓), e daytime temperature perturbation, and f nighttime temperature perturbation for
the equatorial climate zone. The dashed lines show the linear trends of the temporal vari-
ation. All long-term trends are statistically significant (p-value<0.01).
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Figure 2.9: Long-term trend of diurnal temperature range perturbation for the world’s
land surfaces. The solid line shows the mean values while the shaded portion shows the
standard error of the means. The standard errors are negligible. The dashed line shows
the linear trend of the temporal variation. The long-term trend is statistically significant
(p-value<0.01).
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Figure 2.10: Long-term trends in a, daytime apparent surface climate sensitivity (λ∗), b,
nighttime λ∗, c, daytime surface shortwave RE (∆K↓), d, nighttime surface longwave RE
(∆L↓), e, daytime temperature perturbation, and f , nighttime temperature perturbation in
the arid climate zone. The dashed lines show the linear trends of the temporal variation.
All long-term trends are statistically significant (p-value < 0.01).
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Figure 2.11: Long-term trends in a, daytime apparent surface climate sensitivity (λ∗), b,
nighttime λ∗, c, daytime surface shortwave RE (∆K↓), d, nighttime surface longwave RE
(∆L↓), e, daytime temperature perturbation, and f , nighttime temperature perturbation
in the temperate climate zone. The dashed lines show the linear trends of the temporal
variation. All long-term trends are statistically significant (p-value < 0.01).
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Figure 2.12: Long-term trends in a, daytime apparent surface climate sensitivity (λ∗), b,
nighttime λ∗, c, daytime surface shortwave RE (∆K↓), d, nighttime surface longwave RE
(∆L↓), e, daytime temperature perturbation, and f , nighttime temperature perturbation in
the snow climate zone. The dashed lines show the linear trends of the temporal variation.
All long-term trends, except for nighttime ∆L↓, are statistically significant (p-value <
0.01).
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Figure 2.13: Long-term trends in a, daytime apparent surface climate sensitivity (λ∗), b,
nighttime λ∗, c, daytime surface shortwave RE (∆K↓), d, nighttime surface longwave RE
(∆L↓), e, daytime temperature perturbation, and f , nighttime temperature perturbation in
the polar climate zone. The dashed lines show the linear trends of the temporal variation.
All long-term trends are statistically significant (p-value < 0.01).

Regionally, the most notable feature is a steady increase of daytime λ∗, or a progressive

reduction of efficiency of energy redistribution over time, in the equatorial zone (Fig.

2.8a). We attribute this trend to the wide-scale deforestation in the tropics (Achard et al.,

2002; Hansen et al., 2013). Although the MERRA-2 modeling system does not explicitly

prescribe land use change over time, it uses the observed surface climate variables to

constrain the surface energy balance calculation. Tropical deforestation appears to have

changed the surface climate so as to result in the diagnosis by the reanalysis of a loss in

the efficiency of energy redistribution between the surface and the atmospheric boundary

layer. This loss of forest cover serves to amplify the aerosol effect. Sensitivity calculations

using Eq. 2.5 show that of the increase of the daytime cooling signal of 0.067 K between

1980 and 2017, about one third is attributed to the reduction in λ∗ (and the other two third
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to changes in ∆K↓). Non-radiative surface pathways, such as the energy redistribution

efficiency, are shown to dominate the surface temperature change associated with ongoing

land cover change and land management activities (Alkama & Cescatti, 2016; Bright et

al., 2017; Naudts et al., 2016). Our result suggests that these surface processes can also

modify local temperature changes resulting from atmospheric radiative forcing.

2.5 Discussion

Previous studies have shown that the climate sensitivity associated with aerosol RF is

greater than that to CO2 RF (Marvel et al., 2015; Rotstayn et al., 2015; Shindell, 2014).

Estimates based on single-forcing model experiments reveal that the former is about 0.55

K W−1 m2 and the latter is 0.40 K W−1 m2 under transient climate conditions (Marvel

et al., 2015), giving a sensitivity difference of 0.15 K W−1 m2 and a climate forcing effi-

cacy of 1.4 for aerosols. Geographic variations in aerosols are suggested to play a role in

producing this large efficacy (Boucher et al., 2013), but the nature of this role is not well

understood. Our study provides a mechanistic explanation for why the efficacy of aerosol

RF should exceed unity. In the IBPM framework, the surface temperature perturbation

(∆T ) is a signal superimposed on changes in the background atmospheric temperature

(∆Tb, Eq. 2.4). The total surface temperature change is the sum of the two. CO2, a

spatially homogeneous forcing agent, alters the energy balance of the climate system as

a whole, leading to changes in the background atmospheric temperature, but it does not

change the surface incoming solar radiation in predictable patterns either spatially or tem-

porally (Wild et al., 2015a). In other words, if CO2 is the only radiative forcing agent, we

can omit the surface temperature perturbation due to the surface K↓.

On the other hand, aerosols alter both the whole Earth system energy balance and

radiation incident on the surface. We postulate that it is this strong surface RE that results

38



in the large overall aerosol climate efficacy. In our analysis, we assume that the background

temperature change (∆Tb) can be predicted by the energy imbalance measured at the top

of the atmosphere using a standard climate sensitivity value and the additional temperature

change (∆T ) is the result of the intrinsic surface biophysical mechanism. It is the latter

that explains why the aerosol climate forcing efficacy is greater than unity.

Our calculations suggest that the aerosol direct effect alone can explain the large cli-

mate efficacy of aerosols, without consideration of the aerosol indirect effect. The mean

surface climate sensitivity to aerosol RE reported above (0.016 K W−1 m2) is based on

the surface RE. If we divide the global mean land surface ∆T (-0.13 K) by the combined

shortwave and longwave RE at the top of the atmosphere in MERRA-2 (-0.89 W m−2;

Table 2.1), we obtain a sensitivity of around 0.15 K W−1 m2 attributed to the intrinsic bio-

physical mechanism, which is nearly the same as the difference (0.15 W−1 m2) between

the aerosol and the CO2 climate sensitivity (Marvel et al., 2015). Note that accurate calcu-

lations of climate sensitivities necessitate examining temperature changes over both land

and ocean surfaces. While we only focus on the world’s land surfaces, we demonstrate

that the local climate response driven by land-atmosphere interactions below the blending

height can conceptually explain the higher global climate sensitivity to aerosols.

From this aggregated assessment, we have excluded the temperature perturbation that

may arise from changes in the energy redistribution factor f (the last term on the right-

hand side of Eq. 2.4). We have already noted that land use change at tropical latitudes has

amplified the aerosol effect through reducing f and increasing the local apparent climate

sensitivity, although globally, the temporal trend in local apparent climate sensitivity is

negligible (Fig. 2.14). A second process that can alter f is changes in the diffuse radia-

tion. Aerosol scattering increases the fraction of diffuse radiation received by the surface,

allowing sunlight to penetrate vegetation canopies and increase the gross primary produc-

tivity of the land biosphere (Mercado et al., 2009; Rap et al., 2018) and the fraction of heat
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transferred through evapotranspiration, thus decreasing the Bowen ratio (Liu et al., 2014).

We are unable to isolate this biological response to diffuse radiation from the MERRA-2

dataset since MERRA-2 only provides diffuse radiation under polluted conditions. Ac-

cording to a global modeling study, the presence of aerosols can reduce the land Bowen

ratio by 15% to 30% between 20◦N and 20◦S (Liu et al., 2014). In principle, a reduction

in Bowen ratio will generate a negative surface temperature perturbation in the daytime

due to changes in f (Lee et al., 2011) in addition to the negative perturbation due to the

shortwave RE. An accurate estimate of this Bowen ratio induced signal requires that a land

surface model be coupled with an atmospheric radiation transfer model to simultaneously

calculate the surface incoming radiation (including changes in the diffuse fraction) and the

response of the surface sensible and latent heat fluxes.
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Figure 2.14: Long-term trends in a, daytime apparent surface climate sensitivity (λ∗), b,
nighttime λ∗, c, daytime surface shortwave RE (∆K↓), d, nighttime surface longwave RE
(∆L↓), e, daytime temperature perturbation, and f , nighttime temperature perturbation
for the world’s land surfaces. The dashed lines show the linear trends of the temporal
variation. All long-term trends are statistically significant (p-value < 0.01).
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2.6 Conclusions

In this study, we disentangle the local temperature response to the direct surface short-

wave and longwave radiative effects of aerosols for the world’s land surfaces. We find

that the global mean climate sensitivity to the surface longwave effect during the daytime

(0.039 K W−1 m2) is 60% stronger than to the daytime surface shortwave effect (0.024 K

W−1 m2) and 5 times as strong at night (0.127 K W−1 m2). The former is a consequence

of higher emissions of coarse aerosols in regions where the surface energy redistribution

is less efficient, and the latter is related to low turbulent mixing in stable nighttime con-

ditions. The opposing longwave and shortwave effects reduce the DTR, particularly in

arid regions, with almost half the mean reduction in the aggregated region of interest at-

tributable to anthropogenic aerosols. Finally, we analyze long-term trends in the surface

temperature response to aerosol direct radiative effect and find an increase in the local

climate sensitivity in the equatorial zone, possible driven by deforestation activities. Our

results demonstrate the importance of biophysical processes in modulating the spatial het-

erogeneity of aerosol-climate interactions. The inclusion of this local climate response to

aerosols may explain their higher climate forcing efficacy.
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Chapter 3

Isolating the Impact of Aerosols on
Surface Temperature, Terrestrial

Evapotranspiration, and Land Carbon
Uptake Through Both Radiative and

Non-Radiative Pathways

Published as: Chakraborty, T., Lee, X., & Lawrence, D. M. Strong Local Evaporative

Cooling Over Land Due to Atmospheric Aerosols. Journal of Advances in Modeling Earth

Systems, 13, e2021MS002491.
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3.1 Abstract

Aerosols can enhance terrestrial productivity through increased absorption of solar radia-

tion by the shaded portion of the plant canopy – the diffuse radiation fertilization effect.

Although this process can, in principle, alter surface evaporation due to the coupling be-

tween plant water loss and carbon uptake, with the potential to change the surface temper-

ature, aerosol-climate interactions have been traditionally viewed in light of the radiative

effects within the atmosphere. Here we develop a modeling framework that combines

global atmosphere and land model simulations with a conceptual diagnostic tool to inves-

tigate these interactions from a surface energy budget perspective. Aerosols increase the

terrestrial evaporative fraction, or the portion of net incoming energy consumed by evap-

oration, by over 4% globally and as much as ≈40% regionally. The main mechanism for

this is the increase in energy allocation from sensible to latent heat due to global dimming

(reduction in global shortwave radiation) and slightly augmented by diffuse radiation fer-

tilization. In regions with moderately dense vegetation (leaf area index > 2), the local

surface cooling response to aerosols is dominated by this evaporative pathway, not the re-

duction in incident radiation. Diffuse radiation fertilization alone has a stronger impact on

gross primary productivity (+2.18 Pg C y−1 or +1.8%) than on land evaporation (+0.18 W

m−2 or +0.48%) and surface temperature (-0.01 K). Our results suggest that it is impor-

tant for land surface models to distinguish between quantity (change in total magnitude)

and quality (change in diffuse fraction) of radiative forcing for properly simulating surface

climate.
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3.2 Introduction

Aerosols modify the Earth’s radiative budget through scattering and absorption of solar

(shortwave) and terrestrial (longwave) radiation and have large variability in their phys-

ical and chemical properties, horizontal and vertical distributions, and feedbacks from

other components of the climate system, particularly clouds (Ramanathan 2001; Persad &

Caldeira, 2018). Overall, aerosol climatic effects lead to one of the largest uncertainties

in future climate projections (Hinds 1999, Stocker 2014). Unlike the effect of well-mixed

greenhouse gases, the aerosol radiative effect is stronger at the surface than at the top of

the atmosphere (Ramanathan 2001), with aerosols reducing incoming shortwave radiation

through scattering and absorption and increasing incoming longwave radiation through

re-emission of the absorbed energy (Panicker et al., 2008; Chakraborty & Lee, 2019).

Several past studies have examined the aerosol climatic impacts through the lens of

atmospheric energy balance (Ramanathan 2001; Chung et al., 2005; Persad & Caldeira,

2018). In this study, we aim to investigate the global impacts of aerosols from a terrestrial

surface energy budget perspective. One outstanding question concerns how the surface

sensible heat (H) and latent heat flux (λE) respond differently to the aerosol surface ra-

diative effect. Both regional modeling and observational studies show that aerosols may

reduce H more than λE, resulting in an increase of the evaporative fraction (EF), or the

proportion of net incoming energy at the surface dissipated through evaporation (Zhang

et al., 2008; Matsui et al., 2008; Knohl & Baldocchi, 2008; Steiner et al., 2013; Liu et

al., 2014; Wang et al., 2018). Two competing hypotheses are advanced to explain the

enhanced EF. First, aerosols alter quality of the shortwave radiation by increasing diffuse

radiation (K↓,d) at the Earth’s surface, which can penetrate deeper into the canopy than

direct or beam solar radiation and illuminates normally light-limited portion of the vege-

tation (Gu et al., 2003). The resulting increase in primary productivity is called the diffuse
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radiation fertilization effect (Gu et al., 2002; Niyogi et al., 2004; Mercado et al., 2009; Rap

et al., 2015; Rap et al., 2018). Since carbon uptake and water loss are coupled in plants

through stomatal conductance, the primary hypothesis is that this increase in diffuse ra-

diation modifies the moisture flux from the surface and therefore EF (Wang et al., 2008).

A second hypothesis for the change in EF, implicit in the studies of Gu et al. (2006) and

others (Oliveira et al., 2011), is that global dimming, or reduction in quantity of the sur-

face shortwave radiation, is responsible for how the surface available energy is partitioned

between H and λE. It is not known which of the two mechanisms – the diffuse radiation

fertilization effect or the global dimming effect – dominates the EF response.

A second question of broad interest asks how temperatures respond to aerosol loading.

Since the aerosol radiative effect is much larger at the surface than in the atmosphere

or at the top of the atmosphere, it follows that aerosols disproportionately affect surface

temperature (Ts; Chakrabort & Lee, 2019). A reduction in incoming radiation generally

causes surface cooling, but the cooling signal is highly variable in space because land

biophysical properties exert a strong control on this local climate response to atmospheric

forcing (Luyssaert et al., 2014; Bright et al., 2017) and because the biophysical properties

of the surface and the aerosol loading aloft tend to co-vary geographically (Chakraborty &

Lee, 2019). In addition, changes in non-radiative processes like convection, evaporation

and EF can change Ts, even under a constant amount of incoming radiation (Bonan 2008;

Lee et al., 2011). A recent study has examined the Ts response to the direct radiative

effect (Chakraborty & Lee, 2019). How aerosols modify Ts via non-radiative pathways,

however, remains largely unknown.

This study attempts to address these questions by using a modeling framework that

focuses on the modification of the terrestrial surface energy budget by aerosols. We first

quantify the perturbations to each component of the surface energy budget using a model-

ing system consisting of an atmosphere model and a global land model. The atmosphere
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model is run with radiation diagnostics to determine the incoming shortwave and long-

wave radiation fields at the surface with realistic atmospheric aerosol distributions and in

a hypothetical atmosphere with aerosols removed but with clouds intact. The remaining

components of the surface energy budget are simulated by forcing the land model with

the two sets of atmosphere results. In the two simulations, the incoming shortwave (beam

and diffuse) and incoming longwave radiation are different, but other forcing variables (air

temperature, humidity and wind) at the first grid height and surface variables (precipitation

and air pressure) remain the same. A comprehensive evaluation of the simulation results

at the appropriate scales using multiple data sources confirms that the modeling setup cap-

tures the general direction of these interactions. In parallel, using an offline decomposition

analysis of the surface energy budget, we quantify the contributions of aerosol radiative

and non-radiative pathways to local surface temperature perturbations (∆T ). Since the

non-radiative pathways are expected to be strongly mediated by the biophysical charac-

teristics of the surface (Bonan 2008), we quantify the relative strength of these pathways

across different climate and vegetation density zones. Finally, using a third land model

run and offline calculations, we isolate the contributions of the aerosol global dimming

effect and the diffuse radiation fertilization effect on EF, the carbon budget, and Ts. We

find that the aerosol-induced ∆T through the non-radiative pathways is large, especially

over vegetated surfaces.

46



3.3 Materials and Methods

3.3.1 Modeling Framework to Isolate the Impact of Aerosols on the

Surface Energy Budget

The Earth’s surface energy budget represents the thermodynamic interactions between the

surface and the adjacent air layer and is expressed as

K↓ + L↓ −K↑ − L↑ = H + λE +G (3.1)

where K↓ is the incoming shortwave radiation, L↓ is the incoming longwave radiation, K↑

is the shortwave radiation reflected by the surface, L↑ is the longwave radiation emitted by

the surface, H is the sensible heat flux and represents the turbulent transfer of heat from

the surface to the atmosphere, λE is the latent heat flux or the transfer of moisture from

the surface to the atmosphere, and G is the ground flux. The terms on the left-hand side of

Eq. 3.1 comprise the surface net radiation,

Rn = K↓ + L↓ −K↑ − L↑ (3.2)

We use the Community Atmosphere Model (CAM, version 6.0 with slab ocean, pre-

scribed sea ice and present-day climatological distribution of aerosols; Gettelman et al.,

2019) and the Community Land Model (CLM, version 5.0 with biogeochemistry and prog-

nostic vegetation state turned on; Lawrence et al., 2019) to quantify the impact of aerosols

on each component of Eq. 3.1 for the period 2001-2003. We run these models twice at a

resolution of 0.9375◦ × 1.5◦. The first run, labeled as P, is for the polluted atmosphere.

Atmospheric forcing variables produced by CAM at the screen height and at the surface

(incoming solar radiation, incoming longwave radiation, air temperature, specific humid-
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ity, wind speed, atmospheric pressure, precipitation) are used as inputs to drive CLM. By

default, CLM in land-only mode partitions K↓ into the diffuse (K↓,d) and the beam (K↓,b)

component using a polynomial fit function of K↓. In the present study, we bypass this

default partitioning, and instead use K↓,d and K↓,b calculated by CAM. The use of pre-

scribed K↓,d and K↓,b in CLM instead of its default partitioning scheme has been shown

to better capture both the magnitude of GPP and the GPP response to diffuse fraction kd (

= K↓,d/K↓) for a temperate deciduous forest site (Wozniak et al., 2020). To allow the land

processes to adjust to the different forcing sets, the same three years of forcing are looped

six times. The results from the final three-year loop are presented. The relatively short

time period used is justified since this is a study of perturbation and not change over time.

Short periods are also used in other perturbation studies (Matsui et al., 2008; Rap et al.,

2018).

In the second run (labeled as C), the incoming solar and incoming longwave radiation

are calculated with the diagnostic radiation transfer code of CAM but without aerosols. All

other CLM forcing variables (air temperature, specific humidity, wind speed, atmospheric

pressure, precipitation) are identical to those in Run P. The results are for a hypothetical

atmosphere free of aerosols.

The effect of aerosols on the surface radiation and energy processes is quantified as

the difference between Run P and Run C. For example, K↓,d is 62.88 W m−2 in the pol-

luted atmosphere in Run P and 52.09 W m−2 in the clean atmosphere in Run C, giving

∆K↓,d of 10.79 W m−2 (Fig. 3.1). K↓,d is greater in P than in C because the former in-

cludes contributions from scattering by aerosols, gaseous molecules, and clouds whereas

the latter include only contributions from scattering by gaseous molecules and clouds. The

interaction of aerosols with clouds is simulated by default in CAM and does not affect the

diagnostic radiation calculation. Thus, in Run C, the clouds from Run P are preserved.

Had all aerosols been removed from the atmosphere in the default CAM setup, practically
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all clouds would have disappeared. We perform a third run, labeled as M, to help separate

the global dimming and diffuse radiation fertilization effects. In this simulation, K↓ is the

same as in the polluted run (P) and kd is kept the same as in the clean run (C). The overall

change in a variable X due to aerosols can then be decomposed as

∆X = (XP −XM) + (XM −XC) (3.3)

where subscript M, P, and C denote the three simulations, (XP-XM) represents the contri-

bution arising from change in radiation quality or the diffuse radiation fertilization effect,

and (XM-XC) represents the contribution arising from change in radiation quantity or the

dimming effect. The global (and regional; see next subsection) means, as well as their stan-

dard deviations or standard errors (as noted in the corresponding text or figure and table

captions), are calculated after weighing the gridded values by the grid areas. A schematic

of the modeling setup is in Fig. 3.1.

Figure 3.1: Schematic of modeling setup used in the present study. The forcing fields
from CAM6 include incoming diffuse radiation, incoming direct beam radiation, incoming
longwave radiation, air temperature, specific humidity, wind speed, atmospheric pressure,
and precipitation. Only the diffuse radiation, direct beam radiation, and longwave radiation
are changed in the different runs to represent the impact of aerosols on the components of
the incident radiation at the surface.
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Table 3.1: Summary of grid area-weighted annual mean components of the surface radia-
tion energy budgets from CAM and CLM runs for aerosol and no aerosol cases, as well as
their changes, for the world’s land surface and for each climate zone.

3.3.2 Model Evaluation

The realism of the CAM and CLM results (Table 3.1) are assessed by comparison with

multiple independent data products. The CLM forcing data simulated by CAM are com-

pared with the Global Soil Wetness Project version 3 (GSWP3) dataset (Dirmeyer et al.,

2011), the standard atmospheric forcing data used in the Land Model Intercomparison

Project (LUMIP) (Lawrence et al., 2016). The components of the surface energy budget
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from the model runs are also evaluated using NASA’s MERRA-2 reanalysis (Gelaro et al.,

2017), while the simulated sensible and latent heat fluxes are further evaluated against the

FLUXCOM dataset, which merges FLUXNET observations with remote sensing phenol-

ogy and meteorological data (Jung et al., 2019). We choose the ensemble FLUXCOM

estimates from all the machine learning models based on the GSWP3 meteorological forc-

ing for this purpose. We also use observations from the Global Energy Balance Archive

(GEBA) (Wild et al., 2017) to evaluate grid-level incoming shortwave and diffuse radia-

tion. Perturbations to the surface radiation budget due to aerosols are compared against the

MERRA-2 radiation diagnostics and two previous global studies. The statistical param-

eters used for model evaluation are the coefficient of determination (r2), the root-mean-

square error (RMSE), and the mean bias error (MBE). For comparisons against the gridded

datasets, the same time-period as the model run (2001-2003) is used for all terrestrial sur-

faces as well as for each individual Koppen-Geiger climate class, namely tropical, arid,

temperate, boreal, and polar (Rubel & Kottek, 2010; Fig. 3.2a). For GEBA observations,

only the years for which all twelve months of data are available are selected. Since the

CAM-CLM run represents the climatological mean of the radiation fields, GEBA sites

with at least 3 years of data are averaged to create monthly means. To check how well the

aerosol optical depth (AOD) in CAM and leaf area index (LAI) in CLM, two important

parameters that modulate aerosol-biosphere-climate interactions, compare to observations,

we use 5-year averages (2003-2007) derived from the Moderate Resolution Imaging Spec-

troradiometer (MODIS) observations (Knyazikhin et al., 1998; Lyapustin et al., 2018) for

each climate zone.
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Figure 3.2: Maps of study area. Global distribution of a Koppen-Geiger climate zones
and b leaf area index (LAI) bins.

Table 3.2 shows the evaluation of the forcing fields. We see relatively low r2 values

for almost all the variables for the tropical region. This is probably due to the difference

in cloud distribution associated with different parameterizations used in the models. How-

ever, overall, our mean forcing fields are comparable to the GSWP3 data, except for wind
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speed (RMSE = 2.39 m s−1), though that should not affect our perturbation runs much.

Moreover, our overall results are presented at the areally averaged climate zone scale, not

for individual grid values.

Table 3.2: Evaluation of the forcing fields from our CAM run against GSWP3 for the
period 2001-2003 for the world’s land surfaces and for each climate zones. The top two
rows for each variable show the grid-area weighted mean and standard deviation from
the present study and GSWP3. The statistical parameters for model evaluation are the
coefficient of determination (r2), the weighted root-mean-square error (RMSE), and the
mean bias error (MBE).
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We evaluate the gridded incoming diffuse radiation and total shortwave radiation against

observations, both globally and for each climate zone, and find the results to be reasonable

(MBE = 10.20 W m−2 for shortwave; -10.52 W m−2 for diffuse for all sites; Figs 3.3 and

3.4). Note that the underestimation of kd due to the overestimation of shortwave radiation

and underestimation of diffuse radiation will introduce some uncertainties in the magni-

tude of our results. This underestimation may be due to the lower AOD in CAM compared

to MODIS MCD19A2 version 6 observations (Lyapustin et al., 2018), seen for all climate

zones except the arid zone (Fig. 3.5b), which is consistent with the results from a re-

cent study (Wang et al., 2021). The evaluation for longwave radiation is not shown since

there are very few stations with at least three years of incoming longwave observations

in GEBA. The slight difference in incoming shortwave and longwave radiation between

Table 3.3 (and 3.1) and Table 3.2 is because they are re-gridded from datasets at different

resolution. The MERRA-2 reanalysis assimilates satellite-based observations of aerosols

and uses them to isolate the direct radiative effect of aerosols (Gelaro et al., 2017). The

magnitude of the shortwave and longwave aerosol radiative effects from our CAM run

are similar to the MERRA-2 diagnostics (Table 3.4). Note that MERRA-2 only provides

clear-sky ∆L↓ due to aerosols, which contributes to larger relative deviations from CAM

(2.12 ± 3.73 W m−2 for CAM versus 1.02 ± 1.54 W m−2 in MERRA-2).
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Figure 3.3: Evaluation of diffuse radiation. Grid-level evaluation of monthly incoming
diffuse radiation at surface from the CAM run against GEBA observations for a all sites,
b tropical sites, c arid sites, d temperate sites, e boreal sites, and f polar sites.
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Figure 3.4: Evaluation of shortwave radiation. Grid-level evaluation of monthly incoming
shortwave radiation at surface from the CAM run against GEBA observations for a all
sites, b tropical sites, c arid sites, d temperate sites, e boreal sites, and f polar sites.

Table 3.3 shows comparison of the simulated surface energy budget components against

the MERRA-2 reanalysis dataset. In addition to the expected low explanation of variabil-

ity in the tropical region, there is a large difference in the magnitude and variability of G

between MERRA-2 and CLM (r2 = 0.14; RMSE = 1.53 W m−2).
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Table 3.3: Evaluation of the surface radiation and energy budget components simulated
by CAM and CLM against MERRA-2 for 2001-2003 for the world’s land surfaces and for
each climate zone. The top two rows for each variable show the grid-area weighted mean
and standard deviation from the present study and MERRA-2. The statistical parameters
for model evaluation are the coefficient of determination (r2), the weighted root-mean-
square error (RMSE), and the mean bias error (MBE).
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Table 3.4: Comparison of change to the surface energy budget terms due to aerosols
with MERRA-2 data and Chen & Zhuang (for radiation components) and Liu et al. (for
turbulent fluxes).

Table 3.4 shows that the latent heat flux simulated by CLM is in excellent agreement

with the FLUXCOM dataset on both the global scale and for individual climate zones with

MBE less than 10%. The agreement for sensible heat flux is also quite good except for

the boreal and polar climate zones, where CLM shows systematic low biases. The LAI

in CLM is slightly higher than the MODIS MCD15A3H version 6 5-year estimates (Fig.

3.5a; Knyazikhin et al., 1998), but the variability between the climate zones is generally

captured by the model.
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Table 3.5: Evaluation of the sensible and latent heat fluxes simulate by CLM against
FLUXCOM data for the world’s land surfaces and for each climate zones. The top two
rows for each variable show the grid-area weighted mean and standard deviation from
the present study and FLUXCOM. The statistical parameters for model evaluation are the
coefficient of determination (r2), the weighted root-mean-square error (RMSE), and the
mean bias error (MBE).
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Figure 3.5: Comparison of leaf area index (LAI) and aerosol optical depth (AOD) with
satellite observations. Grid-area weighted mean (bars) and standard deviation (error bars)
of LAI and AOD from our CLM and CAM runs compared with 5-year averages (2003-
2007) observed by satellites for each climate zone are shown. The filled bars are for the
parameters in the models, while the hatched bars represent the satellite observations.

We also compare our results with those reported by Liu et al. (2014), which appears

to be the only other global study on aerosol impact on turbulent fluxes on land (Table 3.4).

Our reductions in H and λE are lower than theirs (Table 3.4). While Liu et al. (2014)

did not provide the results for ∆K↓, Chen & Zhuang (2014), who used the same modeling
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framework, reported a ∆K↓ of -21.9 W m−2 (global terrestrial mean) due to aerosols,

which is higher in magnitude than previous studies (Chung et al., 2005; scaled by AOD

over land), as well as MERRA-2 (Table 3.4). Moreover, as also mentioned by the authors,

the magnitude of H simulated by their model is significantly higher than other estimates.

Since our ∆K↓ is in good agreement with the MERRA-2 diagnostics and our simulated

sensible and latent heat fluxes are much closer to FLUXCOM and MERRA-2 estimates

than theirs (Tables 3.4 and 3.5), we are relatively confident about the overall magnitude of

the changes in turbulent fluxes in our study.

Davin and Seneviratne (2012) used an older version of CLM (CLM3.5; see changes

since then in Oleson et al. (2013) and Lawrence et al. (2019)) with a two-big-leaf canopy

structure to demonstrate that it can simulate the enhancement of λE under diffuse light

conditions as observed at an evergreen needleleaf forest site. However, a recent study

using the multi-layer implementation of CLM at a temperate deciduous forest site suggests

an overestimation of the GPP response to kd at the hourly scale during summer (Wozniak

et al., 2020). Our results are less prone to this model uncertainty because the temperature

change induced by the fertilization effect is minor in comparison to the change associate

with Bowen ratio increase under reduced global radiation which is a robust feature across

models (Zhang et al., 2008; Matsui et al., 2008; Mercado et al., 2009; Oliveira et al., 2011;

Davin & Seneviratne, 2012; Liu et al., 2014; Rap et al., 2015; Rap et al., 2018) and in

observational studies (Wang et al., 2008; Kanniah et al., 2012; Wang et al., 2018).

3.3.3 Terrestrial Evapotranspiration and Its Partitioning

The terrestrial evapotranspiration can be separated into evaporation from the ground (λEg),

evaporation from the canopy (λEc), transpiration (λEt) from sunlit leaves (λEt,sun), and

transpiration from shaded leaves (λEt,sha). This separation in CLM is based on the vege-

tation temperature, ground temperature, surface temperature, and specific humidity. The
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method starts with initial guesses for wind speed and Monin-Obukhov length, which are

used to iteratively solve for the other components and sub-components of the surface en-

ergy budget. More information about this numerical scheme can be found in Oleson et al.

(2013).

Of specific importance to the present study, CLM parameterizes photosynthesis and

transpiration separately for sunlit and shaded leaves, but it represents the whole canopy

with a single foliage temperature (Dai et al., 2004). To determine if this simplification

adversely affects our perturbation experiments, we compared the CLM results with the

results of the Community Atmosphere–Biosphere Land Exchange model (CABLE version

1.4). Unlike CLM, CABLE solves the energy balance equation and the foliage temperature

separately for sunlit and shaded leaves (Wang & Leuining, 1998). The comparison was

made for three grid cells where >90% of the grid space is occupied by a single plant

functional type (PFT). Two of the grids are occupied by broadleaf evergreen trees, one

with the highest (-22.3 W m−2; labeled as BET1, in Congo Basin; 3.3◦ N, 17.5◦ E) and

the other with the lowest (-1.5 W m−2; labeled as BET2, in Papua New Guinea; 3.3◦ S,

137.5◦ E) magnitude of the aerosol shortwave radiative effect ∆K↓, both with a LAI of

about 6. The third grid is C3 grass with LAI of 2.1 and ∆K↓ of -6.6 W m−2 (labeled as

C3, in northern China; 49.5◦ N, 118.7◦ E).

For each grid cell, CABLE was prescribed with the corresponding PFT. The default

LAI assigned to the relevant PFTs in CABLE was replaced by the monthly LAI calculated

by CLM. The CABLE simulations were forced by the same atmospheric variables as in

the CLM runs under clean and polluted conditions. To do this, the CABLE model code

was modified to use time-dependent beam fraction of radiation from the CAM simulations.

Figure 3.6 shows the sensible (H) and latent heat flux (λE), including their components,

simulated by the two models for clean sky conditions and their changes due to aerosols, as

well as the surface temperature response. The CABLE model confirms that aerosols de-
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crease the Bowen ratio and the surface temperature, by amounts similar to those simulated

by CLM. The CABLE simulations also demonstrate broadly similar changes in the sunlit

and shaded components of transpiration due to aerosols compared to the CLM simulations.

Figure 3.6: Comparisons between CLM and CABLE results. Simulated three-year mean
latent heat flux and sensible heat flux, their perturbations, and components for a heavily
polluted broadleaf evergreen tree grid (BET1, panels a & d), a lightly polluted broadleaf
evergreen tree grid (BET2, panels b & e), and a C3 grass grid (C3, panels c & f). The
components for the clean atmosphere are represented by the bars in the lower part of each
panel, and the net changes due to aerosols are given by the bars in the upper part. Panel
g shows the Bowen ratio response to aerosols. Panel h shows the surface temperature
response to aerosols. CLM is represented by filled bars and CABLE by hatched bars.
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3.3.4 Attributing Surface Temperature Perturbations Through Ra-

diative and Non-Radiative Pathways

The total surface temperature change (∆Ts) due to aerosols is the sum of the changes in the

blending height temperature (∆Tb) and the local temperature response (∆T ; Chakraborty

& Lee, 2019):

∆Ts = ∆T + ∆Tb (3.4)

Here ∆T arises from the radiative pathway associated with changes in K↓ and L↓

and the non-radiative pathway associated with changes in evaporation and in efficiency of

convection between the surface and the lower atmosphere. This temperature response can

be decomposed according to the theory of intrinsic biophysical mechanism (IBPM) which

is a solution of the perturbed form of Eq. 3.1 (Lee et al., 2011),

∆T =
λ0

1 + f
∆K↓(1− a) +

λ0
1 + f

∆L↓

+
−λ0

(1 + f)2
(R∗n −G) ∆f1 +

−λ0
(1 + f)2

(R∗n −G) ∆f2 +
λ0

1 + f
∆G (3.5)

where a is the surface albedo, R∗n is apparent net radiation given by

R∗n = K↓(1− a) + L↓ − σT 4
b (3.6)

where σ is the Stefan-Boltzmann constant, λ0 is the local temperature sensitivity due to

longwave radiative feedback given by:

λ0 =
1

4σT 3
s

(3.7)
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and f is a dimensionless energy redistribution factor, a measure of the efficiency of energy

dissipation from the surface to the lower atmosphere through convection and evaporation

(Lee et al., 2011). A larger f corresponds to a lower effective local climate sensitivity (λ∗)

according to the relation λ∗ = λ0 / (1+f ).

The IBPM method is a diagnostic tool grounded on a first principle (the surface en-

ergy conservation). It separates the surface temperature perturbation into contributions of

different biophysical pathways. Accordingly, the terms on the right-hand side of Eq. 3.5

represent, from left to right, the temperature response due to change in incoming shortwave

radiation ∆K↓ (term 1), change in incoming longwave radiation ∆L↓ (term 2), change in

energy redistribution through evaporation (term 3), change in energy redistribution through

convection (term 4), and change in ground heat flux ∆G (term 5). The contribution of the

radiative pathway is given by the first two terms, and that of the non-radiative pathway is

given by the last three terms. The realism of the IBPM framework has been extensively

documented in the past, for example, in studies of temperature perturbation due to urban-

ization (Zhao et al., 2014), deforestation (Bright et al., 2017; Burokowski et al., 2018),

and agricultural activities (Ruehr et al., 2020; Chakraborty et al., 2021), and in a study of

lake surface temperature change (Wang et al., 2018).

In this diagnostic calculation, the change terms ∆K↓, ∆L↓ and ∆G are given as the

difference between the two model runs (P minus C), R∗n and λ0 are based on the values

of K↓, L↓, α, Ts, and Tb for the clean atmosphere, with Tb being the atmospheric temper-

ature at the first CAM model grid height (average 60 m above the surface). The energy

redistribution factor (Lee et al., 2011) is calculated from the following diagnostic equation:

f =
λ0

Ts − Tb
(R∗n −G)− 1 (3.8)

Only grids with a positive value of f are considered. Contributions due to evaporation
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(∆f1) and convection (∆f2) are calculated from:

∆f1 = −f ∆β

β(1 + β)
(3.9)

∆f2 = −f∆ra
ra

(3.10)

where β and ra are the average Bowen ratio, the ratio of the sensible and latent heat fluxes,

and aerodynamic resistance, respectively, from Runs P (or M) and C, while the ∆ terms are

the changes in the respective variables between the two runs. The role of the EF change is

expressed through the β change, noting that a negative ∆β corresponds to a positive ∆EF

and vice versa. Changes in β are small (close to zero) for boreal and polar climate, leading

to unreasonably high values of the third term in Eq. 3.5. The ∆T through the evaporative

pathway is thus set to zero for these grids.
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Figure 3.7: Surface energy budget adjustment due to aerosols. Schematic showing grid
area-weighted annual mean terrestrial surface energy budget components for a clean atmo-
sphere, namely incoming shortwave radiation (K↓), direct beam radiation (K↓,b), diffuse
radiation (K↓,d), reflected shortwave radiation (K↑), ground heat flux (G), emitted long-
wave radiation (L↑), incoming longwave radiation (L↓), latent heat flux (λE), and sensible
heat flux (H), along with changes (and percentage changes) to each component due to
aerosols. In each box, the baseline value is at the top, the change is in the middle and the
percentage change is in parentheses at the bottom. All quantities other than the percentage
changes are in W m−2.

3.4 Results

3.4.1 Aerosol Impact on the Surface Energy Budget

Unsurprisingly, aerosols decrease the incoming surface shortwave radiation and increase

the incoming longwave radiation (Fig. 3.7), whose spatial variations are consistent with

the geographic distribution of aerosols (Figs 3.8 and 3.9). The highest changes in incom-

ing radiation are seen over arid regions like the Sahara Desert and the Middle East, and
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moderately large changes over heavily polluted regions like northern India and eastern

China (Fig. 3.8). The global average reduction in the shortwave radiation ∆K↓ over land

is -8.72 W m−2 (-4.5%), from a base K↓ value of 194.57 W m−2 for the clean atmospheric

state (Fig. 3.7 and Table 3.1). This total ∆K↓ consists of an increase in the diffuse radi-

ation (∆K↓,d) by 10.79 W m−2 (20.7%) and a decrease in the beam radiation (∆K↓,b) by

19.51 W m−2 (-13.7%). Consequently, the diffuse fraction (kd) increases by 26%, from

0.268 to 0.338. Because of the large mineral dust aerosol loading and of the low base kd

(0.165) due to low cloud amounts and low zenith angle, the largest percentage increase in

kd (≈70%) is seen for arid regions. Averaged over all land surfaces, increases in L↓ are

roughly one-fourth of the decreases in K↓, at 2.12 W m−2 (0.7%), almost all of which are

attributable to natural absorbing aerosols (Chakraborty & Lee, 2019).

Figure 3.8: Global patterns of changes in incoming radiation at the surface due to aerosols.
Global maps of a, shortwave radiative effect (∆K↓), b longwave radiative effect (∆L↓), c
change in beam radiation (∆K↓,b), and d change in diffuse radiation (∆K↓,d). All quanti-
ties are in W m−2. Non-linear color scales are used to better visualize the spatial variations.
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Figure 3.9: Global patterns of aerosol optical depth. Non-linear color scales are used to
better visualize the spatial variations.

Aerosols reduce both the terrestrial sensible (H) and the latent heat flux (λE), but

by different amounts (Fig. 3.11). H decreases over 7 times as much as λE ( ∆H =

-3.59 W m−2, ∆λE = -0.51 W m−2; Fig. 3.7 and Table 3.1). Separating λE into its

components (Fig. 3.10) explains why ∆λE is smaller than ∆H in magnitude. While

λEg, λEc, and λEt decrease, the total decrease in λEt is partly offset by an increase in

λEt,sha. Moreover, the percentage increases in λEt,sha are much higher than the percentage

decreases in λEt,sun. For instance, for the tropical zone (Fig. 3.10b), the increase in λEt,sha

is 8.2%, while the decrease in λEt,sun is only 2.4%. In this case, λEt,sha increases by 0.55

W m−2, partly offsetting the decrease in λEt due to ∆λEt,sun (-0.83 W m−2). Similar

enhancement of λEt,sha is also seen for other biomes.
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Figure 3.10: Components of latent heat flux and their changes across climate zones. Total
grid-area weighted mean latent heat flux (λE) for a clean atmosphere and its change due
to aerosols (∆λE), as well as the corresponding components, namely ground evaporation
(λEg), canopy evaporation (λEc), transpiration from sunlit leaves (λEt,sun), and transpira-
tion from shaded leaves (λEt,sha) over a all terrestrial surfaces, b tropical climate, c arid
climate, d temperate climate, e boreal climate, and f polar climate. The components for a
clean atmosphere are represented by the filled bars in the lower part of each panel. The net
changes in the components due to aerosols are given by the filled bars in the upper part of
the panel, with the percentage change noted. The net change is further decomposed into
contributions from the diffuse radiation fertilization effect (blank) and the dimming effect
(hatched). The error bars represent the grid area-weighted standard errors.
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Figure 3.11: Global patterns of changes in turbulent fluxes due to aerosols. Global maps
of a, change in sensible heat flux ( ∆H), and b change in latent heat flux (∆λE). All values
are in W m−2. Non-linear color scales are used to better visualize the spatial variations.

According to the hypothesis of diffuse radiation fertilization, efficient penetration of
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diffuse radiation through the canopy increases photosynthesis in shaded leaves under pol-

luted conditions. Consequently, this enhances transpiration from shaded leaves and com-

pensates for the lower transpiration from sunlit leaves under the decreased incoming sun-

light (K↓) due to aerosols. Similar patterns are seen for the components of the ecosystem

carbon budget (Fig. 3.12). The net ecosystem productivity (NEP) increases under aerosol

loading in most climate zones, with an average increase of 1.7% for the Earth’s land sur-

faces. A similar analysis done for different LAI bins shows that the greatest increase in

NEP (and second highest percentage increase) is for grids with LAI > 5 at 0.46 Pg C y−1

(Fig. 3.13). The overall change in gross primary productivity (GPP) is positive as opposed

to a negative ∆λE, supporting previous finding that aerosol loading enhances ecosystem

water use efficiency (Lu et al., 2017). The diffuse radiation fertilization effect alone has

a stronger impact on GPP (increase of 2.18 Pg C y−1 or 1.8% of total terrestrial GPP,

Fig. 3.12a) than on land evaporation (increase of 0.18 W m−2 or 0.48% of total terrestrial

evaporation, Fig. 3.10a).
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Figure 3.12: Carbon budget across climate zones. Net ecosystem production (NEP, orange
bar), gross primary productivity (GPP, red bar), and ecosystem respiration (ER , green
bar) over a all terrestrial surfaces, b tropical climate, c arid climate, d temperate climate,
e boreal climate, and f polar climate. The carbon flux components for a clean atmosphere
are represented by the filled bars in the lower part of each panel. The net changes due
to aerosols are given by the filled bars in the upper part of the panel, with the percentage
changes noted. The net changes are further decomposed into contributions from the diffuse
radiation fertilization effect (blank bar) and the dimming effect (hatched bar).
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Figure 3.13: Carbon budget across vegetation density zones. Net ecosystem production
(NEP, orange bar), gross primary productivity (GPP, red bar), and ecosystem respiration
(ER , green bar) over a grids with leaf area index (LAI) <1, b between 1 to 2, c between 2
to 3, d between 3 to 4, e between 4 to 5, and f and above 5. The carbon flux components for
a clean atmosphere are represented by the filled bars in the lower part of each panel. The
net changes due to aerosols are given by the filled bars in the upper part of the panel, with
the percentage changes noted. The net changes are further decomposed into contributions
from the diffuse radiation fertilization effect (blank bar) and the dimming effect (hatched
bar).

For ∆H , there is no corresponding compensating mechanism; instead H from both
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the ground (Hg) and vegetation (Hv) decrease (Fig. 3.14). As a result, EF increases by

0.023 or 4.5% over the global terrestrial surface (Fig. 3.11). Changes in EF reach 0.05 to

0.06 (almost 10%) over the Congo Basin rainforest in central Africa, northern India, and

eastern and north-western China. Taklamakan Desert in north-western China shows the

highest percentage change in EF (25 to 30%).
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Figure 3.14: Components of sensible heat flux across climate zones. Total grid area-
weighted mean sensible heat flux (H, red bar), sensible heat flux from ground (Hg, orange
bar), and sensible heat flux from vegetation (Hv, green bar) over a all terrestrial surfaces, b
tropical climate, c arid climate, d temperate climate, e boreal climate, and f polar climate.
The components for the clean atmosphere are represented by the filled bars in the lower
part of each panel. The net changes due to aerosols are given by the filled bars in the
upper part of the panel, with the percentage changes noted. The net changes are further
decomposed into contributions from the diffuse radiation fertilization effect (blank bar)
and the dimming effect (hatched bar). The error bars represent the grid area-weighted
standard errors.
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The percentage changes in EF are positively correlated with percentage changes in kd

and strongly modulated by vegetation density, as seen from the steeper slopes of the linear

fit between them for increasing LAI bins (Fig. 3.15a). The sensitivity of percentage change

in EF to percentage changes in kd increases from 0.14 for grids with an LAI less than 1 to

0.32 for grids with an LAI greater than or equal to 5. Similarly, the actual change in EF

shows an increasing trend with increasing ∆kd, though the correlation between the two

is weaker (Fig. 3.15b) than between the relative changes since the base available energy

varies widely between different grids.

Figure 3.15: Association between diffuse fraction change and evaporative fraction
change. a Scatter plot of grid-averaged percentage change in diffuse fraction (kd) versus
percentage change in evaporative fraction (EF) between polluted and clean atmosphere.
The equation for the linear relationship between the two is given above the figure. The
dashed lines, from dark orange to black, are the lines of best fit between the two variables
for increasing leaf area index (LAI) bins. b Association between grid-averaged changes
in EF and in diffuse fraction (∆kd) between polluted and clean atmosphere. The regres-
sion equation between the two is given above the figure, with coefficient of determination
r2, confidence level p, and number of grid points n noted. For each equal-sized ∆kd bin,
frequency distributions of ∆EF, as well as box and whisker plots showing the 25th, 50th,
and 75th percentile of ∆EF are given.

For this analysis, we used the latest version of CLM with biogeochemistry and prog-

nostic vegetation. To illustrate the validity of our conclusions within the modeling frame-

work, we ran an earlier version of the model (CLM4.5) with the same forcing data and

obtained broadly consistent results (Fig. 3.16).
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Figure 3.16: Examining consistency of results using CLM4.5. Identical to Fig. 3.7 and
Fig. 3.17 but using CLM4.5 results instead of CLM5.0.

3.4.2 Isolating Multiple Pathways of Aerosol-Induced Local Temper-

ature Response

Using the theory of intrinsic bio-physical mechanism (IBPM; Lee et al., 2011), we separate

the contributions of different pathways, namely surface shortwave radiative effect, surface
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longwave radiative effect, change in EF, change in convection efficiency or aerodynamic

resistance, and change in the ground heat flux, to the total surface temperature perturbation

(∆T ; Figs 3.17 and 3.18). Note that ∆T only refers to the local temperature response to

aerosols. The total aerosol-induced surface temperature change is the sum of this local

response and the background atmospheric temperature change (Eq. 3.4). Here the realism

of the IBM method is further supported by the good agreement between the temperature

perturbation computed online (grey bars, the “truth”) and the perturbation calculated with

IBPM (red bars, Fig. 3.17).
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Figure 3.17: Comparing modeled and diagnosed surface temperature response. Total
grid-area weighted mean calculated (red, IBPM) and modeled (gray, CLM) temperature
response due to aerosols, as well as calculated component contributions from changes in
incoming shortwave radiation (light yellow, ∆K↓), incoming longwave radiation (blue,
∆L↓), evaporation (green, ∆EF), convection (purple, ∆ra), and ground heat storage (dark
yellow, ∆G) over a all terrestrial surfaces, b tropical climate, c arid climate, d temperate
climate, e boreal climate, and f polar climate. The temperature response through evapo-
ration is further decomposed into the contributions from the diffuse radiation fertilization
effect (blank bar) and the dimming effect (hatched bar). The percentage value denotes the
relative component contribution to the total temperature response. Error bars represent the
grid area-weighted standard errors.
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The magnitude of ∆K↓ is higher in regions of higher aerosol loading (Figs 3.8 and

3.9). The highest values are seen in the arid regions. Overall, the surface shortwave radia-

tive effect reduces the global terrestrial surface temperature by 0.15 K, while the longwave

radiative effect increases it by 0.05 K. The contributions of these radiative pathways are de-

termined by both the radiation changes and the effective local climate sensitivity (λ∗) - the

change in local surface temperature due to a unit surface radiative forcing (Chakraborty

& Lee, 2019). The magnitude of λ∗ is higher for smooth surfaces, such as deserts and

snowpack, and lower for rough surfaces, such as forests (Fig. 3.19). Subsequently, the

temperature response to the radiative effect is higher in arid regions and lower in the tropi-

cal forests (Fig. 3.18). The highest perturbations (<-0.4 K) occur in north-western China,

central Australia, and the Middle East, where both the radiation changes and λ∗ are high.

In comparison, the Amazon rain forest shows low response to the radiative pathways, with

decreases of less than 0.1 K (Fig. 3.18a).
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Figure 3.18: Global patterns of different pathways of aerosol-induced temperature re-
sponse. Global maps of local temperature response (K) from a aerosol shortwave radiative
effect at surface, b aerosol longwave radiative effect at surface, c aerosol-induced evap-
oration change, d aerosol-induced convection change, e aerosol-induced ground storage
change, and f the sum of all pathways. Non-linear color scales are used to better visualize
the spatial variations.
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Figure 3.19: Global patterns of effective local climate sensitivity. Values are in K W−1

m2. Non-linear color scales are used to better visualize the spatial variations.

In contrast, the highest perturbations through the non-radiative pathways (sum of evap-

oration and convection) occur in the Congo Basin (up to -0.6 K), eastern China (up to -0.5

K), and northern India (up to -0.4 K). All of these regions have dense vegetation cover and

relatively high aerosol loading. The Amazon basin does not show a high response to the

non-radiative pathways (less than 0.05 K) since aerosol loading is relatively low over this

region (Figs 3.9 and 3.18d). Taken together, the non-radiative pathways reduce the an-

nual mean terrestrial surface temperature by about 0.06 K. Although aerosols may change

ra through modification of atmospheric stability (Talukdar et al., 2019), we find that the

magnitude of this effect is minor compared to the enhancement of evaporative cooling.

The overall change in the annual mean terrestrial surface temperature ∆T is -0.16 K.

The highest ∆T is seen in the arid zone, followed by the tropical, temperate, boreal, and

polar climate zones (Fig. 3.17). The evaporative pathway accounts for ≈29 % of the total
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∆T globally, and for as much as 45 % in the tropical climate zone. To our knowledge, this

is the first isolation of the local temperature response to aerosols through the evaporative

pathway. Although it is intuitive that increased water loss in plants will lead to surface

cooling, what is surprising is the strength of this pathway.

3.4.3 Dependence on Vegetation Density

The evaporative contribution to the total temperature response increases with increasing

LAI, though the total temperature response itself decreases (Fig. 3.20a). At an LAI of

around 2, the ∆T via the evaporative pathway exceeds the ∆T due to the surface radiative

effect (Fig. 3.20b). At grids with high LAI (> 2), the effective local climate sensitivity is

much lower (mean λ∗ of 0.013 K W−1 m2 versus global mean of 0.029 K W−1 m2), reduc-

ing the surface temperature response through the radiative pathway and thus leading to the

relatively large contribution of aerosol-induced evaporation to ∆T . In comparison, arid

regions have low LAI (regional mean LAI of 0.39) and high climate sensitivity (regional

mean λ∗ of 0.026 K W−1 m2), leading to the low contribution of the evaporative pathway

to ∆T (Fig. 3.17b). Of the three climate zones considered, LAI is greater than 2 in 58%

of the tropical grids, 45% of the temperate grids, and 0.6% of the arid grids (Fig. 3.2b).

Overall, high percentage contributions of the evaporative pathway to the aerosol-induced

local temperature response are seen over the tropical rainforests in both South America

and Africa (Fig. 3.20c).
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Figure 3.20: Contribution of evaporative pathway to aerosol-induced surface temperature
perturbation. a Percentage of surface temperature change attributed to the evaporative
pathway in increasing leaf area index (LAI) bins. Each data point represents one grid
mean value. The box and whisker plot indicates 25th, 50th and 75th percentile values,
with the frequency distribution given to the left. The median of the total local surface
temperature change in K for each LAI bin is at the top of the figure. b Scatter plot of
grid-averaged ratio of temperature change attributed to change in evaporation and that
attributed to changes in surface shortwave and longwave radiation. The linear regression
equation is given above the figure and the dashed line is the line of best fit between the
two variables. The three colors represent three climate zones. c Global map of percentage
contribution of the evaporative pathway to total local temperature response to aerosols.
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3.4.4 Global Dimming Versus Diffuse Radiation Fertilization

Since aerosols simultaneously reduce K↓ and increase kd, an open question is whether

the aerosol-induced changes in EF, GPP, and surface temperature are caused by changes

in the quantity or in the quality of solar radiation (Oliveira et al., 2011). To answer this

question, we conducted a third numerical experiment to help separate the total change

in a variable into contributions from change in radiation quality or the diffuse radiation

fertilization effect and from change in radiation quantity or the dimming effect. Overall,

the fertilization effect is more important for gross primary productivity (GPP) and NEP

than for λE, increasing the global mean λE by only 0.18 W m−2 or 0.48% (Fig. 3.10a)

and global annual NEP by 0.49 Pg C and GPP by 2.18 Pg C (1.8 %; Fig. 3.12a). For

intensive aerosol emission episodes, such as fires and volcanic eruptions, net reductions in

GPP and yield have been demonstrated in previous studies (Yue & Unger, 2018; Proctor et

al., 2018). Here we find that for the sum of all aerosols (natural plus anthropogenic), the

fertilization effect is stronger than the dimming effect, resulting in a net increase in GPP,

which suggests that most ecosystems are light-saturated, although the change is less than

half the total change seen in Chen & Zhuang (2014).

In the case of λE, the fertilization effect is much weaker than the dimming effect, re-

sulting in a net reduction in λE (Fig. 3.10). For transpiration, only the shaded canopy

shows a positive fertilization effect. That the percentage increase in GPP is higher than

the percentage reduction in λE supports the conclusion that diffuse radiation enhances

ecosystem water use efficiency (Knohl & Baldocchi, 2008; Kanniah et al., 2012). Dim-

ming dominates the evaporative response to aerosols, contributing 84% to the global EF

increase, with the remaining increase (16%) coming from the fertilization effect. Conse-

quently, 84% and 16% of the cooling due to EF change of the terrestrial surface (81% and

19% for tropical areas) are attributed to the dimming and the fertilization effect, respec-
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tively (Fig. 3.17). It would not be feasible to obtain the diagnostic insights, such as shown

in Fig. 3.20b, using only a fully-coupled simulation because of the interactive nature of

different biophysical processes. For example, by perturbing K↓ in the coupled simulation,

the evaporative fraction EF will also change, and we would not know whether the surface

temperature change is caused by the change in K↓ or by the change in EF.

3.5 Discussion

The results of our global scale modeling are broadly consistent with those reported in

ecosystem (Knohl & Baldocchi, 2008) and regional scale studies (Matsui et al., 2008;

Davin & Seneviratne, 2012). The stronger effect of diffuse radiation on canopy photosyn-

thesis for higher LAI values (which we see for EF in Fig. 3.15a) was seen using multi-layer

model simulations at a deciduous temperate forest (Knohl & Baldocchi, 2008). Matsui et

al. (2008) found that H is reduced more than λE by aerosol pollution over eastern United

States (∆H = -8.36 W m−2 or -11.3%; ∆λE = -3.12 W m−2 or -2.1%) during summer.

Using the same model domain and season, we find similar patterns (∆H = -4.21 W m−2

or -7.5 % and ∆λE = -0.63 W m−2 or -0.8%), though the magnitude of change is lower

in our study, which could be due to both the different land-surface model used and the

lower value of direct shortwave radiative effect (-16 W m−2 in Matsui et al. (2008) versus

-6.4 W m−2 in present study). Davin and Seneviratne (2012) found that a higher and more

realistic diffuse fraction kd improves the prediction of summertime Ts over Europe than a

fixed kd of 0.30.

Our results highlight the importance of differentiating between total radiative forc-

ing and diffuse radiative forcing at the surface and vegetation responses to these forc-

ings. Currently, K↓,d remains a relatively understudied component of the radiative bud-

get (Halthore & Schwartz, 2000). Although atmospheric reanalysis modeling systems,
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such as NCEP/NCAR (Kalnay et al., 1996), MERRA-2 (Gelaro et al., 2017), and ERA5

(Hersbach et al., 2020), have gridded K↓,d values, they have not been rigorously evaluated

against field observations, which remain scarce. In the Radiative Forcing Model Intercom-

parison Project, the primary focus is on the quantity of the radiative forcing compared to

the pre-industrial baseline, with a tertiary focus on the aerosol radiative forcing (Pincus et

al., 2016). Given the importance of the quality of the radiative forcing demonstrated in the

present study, we recommend a coordinated effort to compare K↓,d among the models tak-

ing part in CMIP6, which would also constrain climate sensitivity to other climate forcers

that change K↓,d, like clouds (Wang et al., 2008). Note that to ensure realistic represen-

tation of aerosol impact on K↓,d, it is important to compare absorbing versus scattering

aerosols as prescribed in or simulated by different models. Even identical AOD values

can lead to different K↓,d. The presence of primarily absorbing aerosols would reduce

both K↓,d and K↓,b, while primarily scattering aerosols would reduce K↓,b but enhance

K↓,d through forward scattering (Gadhavi & Jayaraman, 2010). The present study gives

an evaluation of the CAM6-simulated diffuse radiation at the global scale. Although the

model has reproduced the observed spatial variations inK↓,d reasonably well on the global

scale and also regionally (r2 = 0.92 to 0.98; Fig. 3.3), its diffuse fraction kd is biased low

due to a high bias in K↓ (Fig. 3.4) and a low bias in K↓,d (Fig. 3.3). For the 224 model

grids that contain GEBA observations for both K↓ and K↓,d, the modelled kd is biased low

by an average amount of 0.08. In contrast, Mercado et al. (2009) evaluated their modeled

kd using a subset of GEBA observations in Europe, Germany, and China, demonstrating

a positive bias in their simulated values for Europe and Germany and comparable values

for China. The global land mean kd (0.34, Run P) is lower than the value of kd for pho-

tosynthetically active radiation of 0.41 reported by Ryu et al. (2018). For reference, the

global mean kd is 0.27 for Run C. If we assume that the model error in kd is 0.07 and

that this error only affects Run P, correcting the model bias would change the diffuse ra-
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diation fertilization effect on ∆T from -0.007 K in Fig. 3.17a to -0.014 K, which is still

much smaller in magnitude than the global dimming effect (-0.040 K). In other words,

the conclusion that the dimming effect dominates the fertilization effect still holds despite

the bias error. Furthermore, most of the error will probably cancel out in the perturbation

signal (difference between Run P and C) because kd in Run C is likely biased by a similar

amount as both runs incorporate clouds.

Figure 3.21: Surface and air temperature response to aerosols for all land surfaces and
each climate zone. The filled bars represent the net changes. These changes are further
decomposed into contributions from the diffuse radiation fertilization effect (blank bar)
and the dimming effect (hatched bar). The error bars represent the grid area-weighted
standard errors.

On the land-modeling side, there are three broad leaf-to-canopy upscaling schemes

(one-big-leaf, two-big-leaf, and multi-layer; Luo et al., 2018). The one-big-leaf models

ignore shaded leaves and are thus unable to simulate the diffuse radiation fertilization

effect (Lian et al., 2018). On the other hand, CLM uses a two-big-leaf approach for pho-

tosynthesis and transpiration, where the carbon and water cycle are separately calculated
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for sunlit and shaded parts of the canopy, with sunlit leaves receiving both beam radiation

and diffuse radiation and shaded leaves receiving only diffuse radiation, and the LAI de-

pendence captured through the fractional change of shaded versus sunlit leaves (Oliveira

et al., 2011; Bonan et al., 2011; Kennedy et al., 2019). Of the land surface models (LSMs)

taking part in the Land Model Intercomparison Project as part of CMIP6 activities (LU-

MIP; Lawrence et al., 2016), at least three still use the one-big-leaf scheme (Table 3.6).

Likewise, the land surface modules in regional weather models usually have the simplistic

one-big-leaf type representation of the vegetation (Davin & Seneviratne, 2012) or even

combined vegetation and ground surface layers (Chakraborty et al., 2019). Thus, regional

studies on aerosol impact on the surface energy budget using these models evidently miss

this key mechanism (Pere et al., 2011; Li et al, 2017). Improved representation of canopy

architecture to resolve the scale mismatch between leaf and canopy leads to more accurate

estimation of radiation transfer through the canopy layer and better agreement between

simulated and observed GPP in many cases (Bonan et al., 2012). It is important to stress,

however, that these evaluations are based on light-response curves and do not explicitly

resolve the response of vegetation to K↓,d. Uncertainties still remain as to how well the

CLM model simulates the GPP response to K↓,d (Wozniak et al., 2020). However, our

results are not adversely affected by these uncertainties as the cooling attributed to the

diffuse fertilization effect is minor in comparison to the overall Bowen ratio change. Our

modeling results regarding the latter are broadly consistent with previous regional (Zhang

et al., 2008; Matsui et al., 2008; Davin & Seneviratne, 2012) and global-scale modeling

studies on this topic (Table 3.6, Liu et al., 2014), as well as several field-scale observational

studies (Gu et al., 2002; Gu et al., 2003; Niyogi et al., 2004; Wang et al., 2008; Kanniah et

al., 2012; Wang et al., 2018). On the measurement side, observational constraints on the

diffuse radiation fertilization effect are lacking (Steiner et al., 2013). Regions where the

magnitude of this signal would be strong, such as heavily polluted tropical areas, have a
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dearth of simultaneous measurements of K↓,d and the surface energy fluxes - an important

issue to address in future studies.

Table 3.6: Overview of the land surface models (LSMs) and their parent Earth System
models (ESMs) taking part in the Land Model Intercomparison Project (LUMIP), and
their canopy representation.

The main limitation of the present study is that the atmosphere is prescribed rather

than interactive. In the real world, increases in EF would also lead to local feedback

on grid-level forcing variables such as air temperature and humidity and to regional and

global feedback via changes in cloud cover and potential changes in aerosol circulation.

According to our CLM runs, the local screen-height air temperature is, expectedly, also

reduced by aerosols, though the magnitude of decrease is only 0.02 K (global land mean);
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much smaller than the reduction in surface temperature (mean reduction of 0.13 K; Fig.

3.21). This stronger sensitivity of surface temperature is similar to the local cooling effect

of reforestation (Novick & Katul, 2020). In an idealized numerical experiment in which

the surface λE is increased by 1 W m−2 and H decreased by 1 W m−2 uniformly across

the land and the ocean surface (equivalent to an increase of EF by 0.014), the global

surface temperature is reduced by 0.54 K due to increases in cloudiness (Ban-Weiss, et al.,

2011). In other words, the non-radiative pathway of aerosols (via EF increase) could lead

to additional cooling via a cloud feedback, although the feedback strength may have been

overestimated by this idealized experiment because the 1 W m−2 addition is applied to λE

at all times (in day and night and in growing and non-growing season) and over both the

land and the ocean surfaces.

With aerosol emissions expected to decrease in future climate scenarios (Westervelt

et al., 2015), better constraining aerosol-biosphere-climate interactions will help us iso-

late regions vulnerable to future warming. In the context of this study, at the local scale,

some of the future warming will result from the decrease in the aerosol surface radiative

effect and from the decrease in EF due to global brightening. Based on our results, for the

highly populated and highly polluted regions of northern India and eastern China, where

roughly half of the AOD is from anthropogenic sources (Chakraborty & Lee, 2019), the

radiative and non-radiative pathways can lead to an additional annual mean warming of

0.3 K to 0.4 K if all anthropogenic aerosols are removed (Fig. 3.18f). In contrast, the

geoengineering scenario of injecting aerosols to the stratosphere to offset greenhouse gas

warming will change the surface energy budget and temperature in the opposite direction

to pollution abatement. One analog for such a scenario is the eruption of Mount Pinatubo

in 1991 (Proctor et al., 2018). According to the MERRA-2 reanalysis, this volcanic erup-

tion reduced the global K↓ by about 3.05 W m−2 and increased K↓,d by 3.74 W m−2 (year

1992’s annual mean minus the mean of 1988 to 1990), or about one-third of the aerosol
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surface radiative forcing shown in Fig. 3.7. A similar amount of K↓,d increase is reported

from a global model simulation of stratospheric sulfate geoengineering (3.20 W m−2; Xia

et al., 2016). These results suggest that aerosols from geoengineering will have a modest

non-radiative effect on local temperature.

3.6 Conclusions

We develop a modeling framework for understanding terrestrial aerosol-climate interac-

tions from the surface energy budget perspective. In this framework, aerosols reduce the

incoming shortwave radiation four times as much as they increase the incoming longwave

radiation, with an overall reduction in the incoming radiation energy of 6.60 W m−2 over

the global terrestrial surface. Our modeling results demonstrate that the reduction in the

incoming radiation is mainly compensated by a reduction in the surface sensible heat flux

(∆H = -3.59 W m−2) and to a lesser extent by a reduction in the surface evaporation

(∆λE = -0.51 W m−2), leading to an increase in the terrestrial evaporation fraction EF

by 0.023. The main mechanism for the EF increase is change in energy allocation due to

global dimming (reduction in incoming solar radiation) and augmented by a diffuse radia-

tion fertilization effect or enhanced transpiration from the shaded plant canopy due to the

increase of diffuse radiation. We then partition the surface temperature response into con-

tributions from the radiative pathway (reduction in incoming radiation energy) and from

the non-radiative pathway (increase in EF). A surprising result is that for grids with LAI>

2, the non-radiative pathway dominates the local temperature response over the radiative

pathway. The diffuse radiation fertilization effect alone has a small effect on the terrestrial

surface energy budget, increasing evaporation by 0.18 W m−2 or 0.48% of total terrestrial

evaporation. This contrasts sharply with the terrestrial carbon budget response, with the

diffuse radiation fertilization increasing GPP by a much larger amount of 2.18 Pg C y−1
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or 1.8% of the total GPP. Given the model-dependent nature of the magnitude of some of

these results, we discuss the importance of comprehensive future land model evaluations

focused on the diffuse radiation fertilization effect.
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Chapter 4

Comparing Diffuse Solar Radiation in
Current-Generation Reanalysis and

Satellite-Derived Products

Published as: Chakraborty, T. & Lee, X. Large Differences in Diffuse Solar Radiation

Among Current-Generation Reanalysis and Satellite-Derived Products. Journal of Climate
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4.1 Abstract

Though the partitioning of shortwave radiation (K↓) at the surface into its diffuse (K↓,d)

and direct beam (K↓,b) components is relevant for, among other things, the terrestrial en-

ergy and carbon budgets, there is a dearth of large-scale comparisons of this partitioning

across reanalysis and satellite-derived products. Here we evaluate K↓, K↓,d, and K↓,b,

as well as the diffuse fraction (kd) of solar radiation in four current-generation reanaly-

sis (NOAA-CIRES-DOE, NCEP/NCAR, MERRA-2, ERA5) datasets and one satellite-

derived product (CERES) using ≈1400 site years of observations. Although the system-

atic positive biases in K↓ is consistent with previous studies, the biases in gridded K↓,d

and K↓,b vary in direction and magnitude, both annually and across seasons. The inter-

model variability in cloud cover strongly explains the biases in both K↓,d and K↓,b. Over

Europe and China, the long-term (10-year plus) trends in K↓,d in the gridded products are

noticeably differ from corresponding observations and the grid-averaged 35-year trends

show an order of magnitude variability. In the MERRA-2 reanalysis, which includes both

clouds and assimilated aerosols, the reduction in both clouds and aerosols reinforce each

other to establish brightening trends over Europe, while the effect of increasing aerosols

overwhelm the effect of decreasing cloud cover over China. The inter-model variability

in kd seen here (0.27 to 0.50 from CERES to MERRA-2) suggests substantial differences

in shortwave parameterization schemes and their inputs in climate models and can con-

tribute to inter-model variability in coupled simulations. Based on these results, we call

for systematic evaluations of K↓,d and K↓,b in CMIP6 models.
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4.2 Introduction

Solar radiation is a key driver of the Earth’s climate system. During its transmission

through the atmosphere, it is scattered and absorbed by aerosols, clouds, and gases. So-

lar radiation incident on the surface (K↓) consists of beam radiation (K↓,b) and diffuse

radiation (K↓,d). The former follows the original path of the sunlight and the latter is

the scattered component that deviates from that path. These components are not routinely

measured at weather stations (Stephens et al., 2012). Instead, climatic and ecological stud-

ies and solar energy applications generally rely on gridded estimates from atmospheric

models, including reanalysis products and global climate models (GCMs). Owing to com-

putational limitations, these models are run at relatively coarse resolutions (50 km to over

200 km). This leads to simplified versions of radiative transfer codes being implemented in

these models, as well as differences in input parameters like clouds and aerosols to those

codes, both of which influence the estimated radiation fields (Oreopoulos et al., 2012).

Systematic biases exist in these model estimates. It is well-known that K↓ is overesti-

mated by most atmospheric models due in large part to the underestimation of cloud cover

(Markovic et al., 2009; Bosilovich et al., 2011; Kennedy et al., 2011; Zhao et al., 2013;

Wild et al., 2015b; Zhang et al., 2016). This overestimation will lead to surface warm-

ing (Chakraborty & Lee 2019) and also increase the energy returned to the atmosphere

through heat and moisture fluxes, which may artificially strengthen the hydrological cycle

(Wild et al., 1998).

K↓,d remains a relatively understudied component of the Earth’s radiation budget. Sev-

eral studies have demonstrated enhanced carbon uptake and evaporative fraction at various

scales with increasing K↓,d (Knohl and Baldocchi 2008; Mercado et al., 2009; Yue and

Unger 2017; Rap et al., 2018; Chakraborty et al., 2021). Thus, a better constraint on K↓,d

can improve our ability to predict the surface energy, water and carbon budgets. Accu-
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rate estimates of the direct/diffuse partitioning of K↓ are also important for solar energy

applications, particularly concentrating solar power (Lee et al., 2016).

This study is concerned with biases in surface K↓,d in retrospective analysis or reanal-

ysis datasets, which assimilate observations of some variables to constrain other modeled

variables (Kalnay et al., 1996). These observationally constrained datasets represent our

best estimates of the current and historical global climate system. Although site-level com-

parisons of radiation transfer codes that also considerK↓,d have been performed in the past

(Oreopoulos et al., 2012), how accurately reanalysis models simulate K↓,d remains largely

unknown at the global scale. To our best knowledge, only a couple of regional scale eval-

uations of K↓,d from reanalysis data are available, both for the ERA5 reanalysis (Jiang

et al., 2019b, 2020). The second activity of an ongoing inter-model comparative project

called Radiative Forcing Intercomparison Project (RFMIP) requests modeling centers to

provide broadband fluxes based on their radiative transfer codes, but does not explicitly

require the partitioning of K↓ into K↓,d and K↓,b (Pincus et al., 2016).

The lessons learned about model biases in K↓ are not necessarily applicable to K↓,d.

K↓,b incident on the surface is controlled by the total extinction of a light beam as it

transmits through the atmosphere, while K↓,d is a function of the scattered sunlight (Liu

and Jordan 1960). Thus, one can hypothetically fix the overestimation of K↓ in modeled

products by increasing aerosols or clouds or through statistical bias-correction algorithms

(Zhao et al., 2013), but with unknown individual biases in K↓,d and K↓,b. Since aerosols

and clouds are parameterized differently in different gridded products, including, but not

limited to, prescriptions of cloud droplet size distribution, cloud overlap, and aerosol prop-

erties, our hypothesis is that the bias in K↓,d and K↓,b are less systematic in direction than

that seen forK↓ in previous studies and strongly controlled by the cloud and aerosol inputs

(Wild et al., 2015b). To test these hypotheses, the specific objectives of this study are:

1. To perform a systematic evaluation of the monthly K↓,b, K↓, and K↓,d in gridded
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data products, including five current-generation reanalysis datasets (NOAA-CIRES-

OE, NCEP/NCAR, JRA-55, MERRA-2 and ERA5; only K↓ for JRA-55) and one

satellite-derived product (CERES)

2. To examine the differences in these variables between the gridded data products

benchmarked against observations at the annual and seasonal time scales

3. To evaluate the ability of the gridded products to capture long-term changes in these

variables for Europe and China, two regions which have relatively high densities

of ground-based observations and have several previous relevant studies to compare

the results

4. To discuss potential sources of biases and inter-model variability, particularly due to

cloud cover and also atmospheric aerosols, in these datasets

4.3 Methods

4.3.1 Global Reanalysis Products

We used monthly gridded data from five reanalysis products: (1) NOAA-CIRES-DOE

– the Twentieth Century Reanalysis version 3 from National Oceanic and Atmospheric

Administration (NOAA), Cooperative Institute for Research in Environmental Science

(CIRES), and Department of Energy (DOE), (2) NCEP/NCAR – the 50-year Reanal-

ysis from National Centers for Environmental Prediction (NCEP) and National Center

for Atmospheric Research (NCAR), (3) JRA-55 – the Japanese 55-year Reanalysis, (4)

MERRA-2 – the Modern-Era Retrospective analysis for Research and Applications, ver-

sion 2, and (5) ERA5 – the Fifth Generation Reanalysis from the European Centre for

Medium-Range Weather Forecasts (ECMWF). They represent the latest iteration of the
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major global reanalyses for research and applications. Note that although the Climate

Forecast System Reanalysis (CFSR; Saha et al., 2010) is newer than the NCEP/NCAR

reanalysis, it does not publicly archive K↓,d. Table 4.1 summarizes the important infor-

mation about the products considered in the study. Short descriptions of the datasets are

given below.

NOAA-CIRES-DOE

This reanalysis assimilates surface pressure observations to provide estimates of the histor-

ical climate state (Slivinski et al., 2019). In addition to improvements in the assimilation

system, the latest version of the reanalysis includes a higher resolution forecast model,

more assimilated pressure observations, and better representation of storm intensity. The

radiative transfer model for shortwave in this reanalysis interacts with fractional cloud

cover, modeled O3, time varying CO2, volcanic aerosols, and solar variations (Hou et al.,

2002).

NCEP/NCAR

This reanalysis assimilates data from a wide variety of weather observation including pres-

sure measurements over land, pressure, temperature, and specific humidity measurements

over oceans, radiosonde profiles, temperature and wind data observed from aircraft, and

satellite-derived cloud-tracked wind data (Kistler et al., 2001). The shortwave parameteri-

zation in this reanalysis is based on the work by Lacis and Hansen (1974).

JRA-55

The JRA-55 reanalysis version improves upon the previous JRA-25 product with an up-

dated assimilation system, more ingested observations, a newer longwave radiation scheme,

and higher resolution forecasts (Kobayashi et al., 2015). The shortwave radiation is param-
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eterized considering random overlap of clouds, H2O absorption based on Briegleb et al.

(1992), O2, O3, and CO2 absorption based on Freidenreich & Ramaswamy (1999), and as-

suming standard atmospheric aerosol profiles with optical depths adjusted using monthly

aerosol climatology. It only archives gridded data for K↓.

MERRA-2

The MERRA-2 reanalysis is a recent global reanalysis product that assimilates bias-corrected

satellite observations of aerosols and clear-sky irradiances (Randles et al., 2017). It also

uses observed precipitation to force the land-surface model. The shortwave radiation

scheme is based on Chou and Suarez (1999) and the latest version of the Goddard Earth

Observing System (GEOS-5) assimilates newer satellite observations. The total aerosol

optical depth (AOD) in MERRA-2 has been evaluated against independent observations

(Buchard et al., 2017).

ERA5

The ERA5 reanalysis uses the recently developed Integrated Forecasting System to im-

prove upon its predecessor (Hersbach et al., 2020). In addition to the finer horizontal

model resolution, ERA5 has consistent hourly outputs, improvements in the dynamical

core, and a four-dimensional variational data assimilation system (like JRA-55). Stan-

dardized sets of long-term forcing for aerosols, greenhouse gases, and O3 are taken from

the World Climate Research Programme (WCRP) and the McRad scheme is used to pa-

rameterize radiation (Morcrette et al., 2008).

4.3.2 Satellite-Derived Estimates

In addition to the reanalysis products, we used the satellite-derived monthly gridded K↓

and K↓,d data in the latest version of the Clouds and the Earth’s Radiant Energy System
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(CERES) synoptic product, (CERES SYN1deg Ed4.1; Rutan et al., 2015). The dataset is

well-constrained by observations due to direct measurements of the top of the atmosphere

components and the use of aerosol and cloud observations from satellites, including those

carrying the Moderate Resolution Imaging Spectroradiometer (MODIS), in the radiative

transfer code.

Table 4.1: Summary of the global gridded products considered in the present study. The
global means and interannual standard deviations of the variables of interest for Common
Period I (2001-2015) are also noted.

4.3.3 Ground-Based Point Observations

The Global Energy Balance Archive (GEBA) is a repository of energy flux measurements

at the Earth’s surface (Gilgen & Ohmura 1999) and is the most comprehensive global

database of observed mean monthly surface radiation components currently available.

Here we used the latest iteration of the database (Wild et al., 2017) after removing sites

with missing data and applying the following quality control steps:

1. We considered only the observations not flagged as erroneous by the database’s

quality control procedure (thus, data with flags 5, 6, 7, and 8 were used)

2. Observations for which the monthly means were 0 W m−2 were not considered since

they are primarily due to either instrument errors or during polar nights.
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3. We removed observations if the diffuse fraction, kd =K↓,d/K↓ , exceeded one or was

0.

4. Although there are many more stations with K↓ measurements than K↓,d measure-

ments, to keep the number of sites consistent, we only considered those with simul-

taneous observations of K↓ and K↓,d in most cases (except for examining long-term

trends; see next subsection).

After data screening, we obtained 221 stations (distribution of stations shown in Fig.

4.1) with a total of 16589 site-months of data between 1980 and 2015. Only a few GEBA

sites have direct measurements of K↓,b. For evaluating modeled K↓,b, the observed K↓,b

was computed as the difference between K↓ and K↓,d.

Figure 4.1: Geographic distribution of all the GEBA sites used in this study. The sites
used for Common Period I (2001-2015) are shown in Fig. 4.5
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4.3.4 Data Processing and Metrices for Evaluation

We extracted monthly K↓,d, K↓,b, and K↓ from the gridded datasets from the start of 1980

to the end of 2019. Only K↓ was extracted for JRA-55 since it does not publicly archive

K↓,d or K↓,b. For the overall evaluation against GEBA, all the grids overlapping the obser-

vational sites and months between 2001 to 2015 were used. This period is common to all

the six datasets and is referred to as Common Period I. For cases where multiple sites were

within one grid box, the same grid value was compared against each of those observations.

For NCEP/NCAR, the lowest resolution dataset, roughly 12% of the sites share a common

grid with another site, while only 2% of sites share a common grid when using the highest

resolution dataset (ERA5). Four metrics were used to evaluate the modeled data, including

coefficient of determination (r2), root mean square error (RMSE), mean bias error (MBE),

and mean percentage error (MPE).

To examine inter-model variability at annual and seasonal scales, we chose Common

Period I and used the CERES data as reference. To avoid mixing the seasonality of the

two hemispheres, we only used sites and grids in the northern hemisphere when examining

seasonality. Although point-based observations of surface radiation fields are not always

comparable to gridded estimates due to how models represent clouds, at the monthly scale,

these uncertainties are reduced (see Limitations subsection).

We restricted our trend analysis to Europe and China between 1980 and 2015. This

period, termed here as Common Period II, is longer than the CERES data period but cov-

ered by all the five reanalysis products (Table 4.1). These two regions have more sites with

continuous data coverage than other regions of the world. We calculated temporal trends

for the sites with at least a total of 10 years of data (not necessarily contiguous years). Site-

averaged time trends of the gridded model data were based on the same measurement years

and the grids containing these GEBA sites. The threshold of 10 years, although somewhat
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arbitrary, was used, not to estimate the true 35-year trend but to examine whether the grid-

ded products showed similar trends during the corresponding time-frame. Similar thresh-

olds have been used in other studies that have examined long-term trends in K↓ (Yang et

al., 2019; Schwarz et al., 2020). Since few of the sites have both observations of K↓,d

and K↓ that satisfy all the above criteria, we used a different subset of measurements for

K↓ and K↓,d over these regions. This left us with 28 (7) stations over Europe (China) for

examining K↓ trends, and 15 (5) sites over Europe (China) for K↓,d trends. Before using

these stations, however, we also tested for change/breakpoints in the time series data using

the Standard Normal Homogeneity Test (Alexandersson 1986). Considering only those

stations that show no breakpoints at the 95% significance level, we got 24 (4) stations over

Europe (China) for K↓ and 8 (4) stations over Europe (China) for K↓,d. We also calculated

the grid-averaged modeled trend for the entire period (1980-2015) using all the grids that

fall within Europe and China. Before finding the grids intersecting these two regions, the

five reanalysis products were re-gridded to 1◦ × 1◦ grids, the grid size of CERES, using

bilinear interpolation, which is appropriate due to the spatial continuity in these variables

at the annual time scale. This re-gridded data were also used to demonstrate grid-by-grid

difference in multi-year average values between the products. In all cases, the trends were

based on the annual average value regressed against the year of observation, with the sta-

tistical significance of the trends calculated. Finally, we also estimated cloud cover, top

of the atmosphere K↓ and AOD (from MERRA-2) for Europe, China, and globally to

examine the reasons for some of these biases.
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4.4 Results

4.4.1 Overall Evaluation and Annual Inter-Comparisons

The global mean K↓ varies from 185.4 W m−2 (CERES) to 205.3 W m−2 (NCEP/NCAR)

for Common Period I (2001-2015), based on all model grids (Table 4.1). In comparison,

Wild et al. (2015) found a multi-model mean K↓ of 189.1 W m−2 based on 43 CMIP5

models for 2000-2004. For the grid-years that coincide with the GEBA observations, the

modeled mean K↓ varies from 165.2 W m−2 (CERES) to 208.1 W m−2 (NCEP/NCAR),

and the observed meanK↓ is 162.5 W m−2. All the reanalysis datasets capture the seasonal

(Fig. 4.7) and geographic distributions of the GEBA-observed K↓ relatively well, with the

overall r2 varying from 0.9 for NOAA-CIRES-DOE and NCEP/NCAR to 0.96 for CERES

(Table 4.2). As expected, CERES performs better than all the reanalysis products, both in

terms of variability (r2 = 0.97) and bias (MBE=2.6 W m−2).

The global mean K↓,b varies from 82.8 W m−2 (CERES) to 132.8 W m−2 (MERRA-

2) during Common Period I, based on all model grids. The sign of the error in K↓,b

is less consistent across the different products than the error in K↓ (Fig. 4.2). While

NCEP/NCAR, MERRA-2, and ERA5 overestimate K↓,b (MBE = 36.8, 39.9, and 17.4 W

m−2, respectively), NOAA-CIRES-DOE and CERES underestimate it (MPE = -4.3 and

-16.8 W m−2, respectively; Table 4.2). Among the reanalyses, ERA5 performs the best at

capturing the global variability in K↓,b (r2 = 0.9), and NCEP/NCAR perform the worst (r2

≈ 0.73).
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Table 4.2: Evaluations of monthly mean incoming shortwave radiation (K↓), direct beam
radiation (K↓,b), diffuse radiation (K↓,d), and diffuse fraction (kd) at the surface against the
common GEBA observations for Common Period I (2001-2015). Statistical summaries of
the evaluations include the intercept and slope of the line of best fit, coefficient of determi-
nation (r2), Mean Bias Error (MBE), and Mean Percentage Error (MPE). The sample size
is 14155 in all cases.

The global meanK↓,d varies from 52.8 W m−2 (MERRA-2) to 102.6 W m−2 (CERES),

and diffuse fraction kd varies from 0.28 (MERRA-2) to 0.55 (CERES) during Common Pe-

riod I based on all model grids (Table 4.1). For the grid-years that coincide with the GEBA

observations, kd ranges from 0.28 (MERRA-2) to 0.55 (CERES), and the observed mean

kd for the quality-controlled GEBA dataset is 0.46. NOAA-CIRES-DOE, NCEP/NCAR

and CERES have positive biases in K↓,d (MBE = 13.8, 8.77, and 19.5 W m−2, respec-

tively; Table 4.2), and MERRA-2 and ERA5 have negative biases (MBE = -21.4 and -9.9
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W m−2, respectively; Table 4.2). Bias errors in kd depends on errors in K↓,d and K↓.

For MERRA-2 and ERA5, K↓ is positively biased, and K↓,d is negatively biased (Table

4.2). Consequently, these two reanalyses underestimate kd, with MERRA-2 performing

the worst among the datasets, with an MBE of -0.18 for all sites. NCEP/NCAR under-

estimates kd (MBE = -0.07) because it overestimates K↓ more (relatively speaking) than

it overestimates K↓,d (Table 4.2). Even though NCEP/NCAR and NOAA-CIRES-DOE

show smaller MBE than MERRA-2, they do not capture the observed variability in kd

well (r2 = 0.36 to 0.41). ERA5 captures the variability in kd the best (r2 = 0.72), even bet-

ter than CERES (r2 = 0.67). CERES overestimates kd (MBE = 0.09) as it underestimates

K↓,b and overestimates K↓,d.
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Figure 4.2: Evaluations of monthly mean incoming a diffuse fraction (kd), b beam radia-
tion (K↓,b), and c diffuse radiation (K↓,d) at the surface of gridded reanalysis and CERES
products against the common GEBA observations for Common Period I (2001-2015). The
red dashed lines represent the 1:1 relationship. Color indicates data density. Statistical
summaries of the evaluations are in Table 4.2.

Figure 4.2 shows the scatter plots between gridded and observed kd, K↓,d , and K↓,b

for all common GEBA site-months, with each data point representing a monthly mean and
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the color representing the density of data. Fig. 4.3 shows the scatter plots for total K↓.

The scatter is a result of both natural (seasonal and geographic) variations and measure-

ment and model errors. As discussed earlier, the gridded data show larger variability than

observations, and the biases in gridded K↓,d and K↓,b across products is less systematic in

sign than the consistent overestimation seen for K↓ (Fig. 4.1 and Table 4.1). This lack of

consistency is evident in the scatter plot. For instance, although the line of best fit for the

gridded K↓,b data is ERA5 is almost identical to the 1:1 line, the slope is only 0.7 for K↓,d

since the intercept. For CERES, the line of best fit is less than the 1:1 line for K↓,b, but is

greater than 1:1 for K↓,d, demonstrating the underestimation of K↓,b and overestimation

of K↓,d by this dataset with an intercept close to zero. In general, more scatter is seen

for NOAA-CIRES-DOE and NCEP/NCAR data and the least for ERA5 and CERES. For

NOAA-CIRES-DOE, the large scatter for kd suggests that the dataset cannot adequately

capture the spatiotemporal distribution of this variable.

4.4.2 Site-level Evaluation and Spatial Patterns

Figure 4.4a and 4.4b map the MBE in K↓ at individual GEBA sites for NCEP/NCAR and

CERES, respectively, for Common Period I. Similarly, Figs 4.4c and 4.4d display the site-

level MBE in NCEP/NCAR and CERES for K↓,d. Bias maps for the other data products

can be found in Fig. 4.5.
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Figure 4.3: Evaluations of monthly mean incoming shortwave radiation (K↓) at the sur-
face of gridded reanalysis and CERES products using all common GEBA observations for
Common Period I (2001-2015). The red dashed lines represent the 1:1 relationship. Color
indicates data density. Statistical summaries of the evaluations are in Table 4.2 of the main
text.
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Figure 4.4: Site-level mean bias error (MBE) in incoming shortwave radiation (K↓) at the
surface for a NCEP/NCAR and b CERES data compared to common GEBA observations
for Common Period I (2001-2015). Sub-figures c and d show mean bias error in incoming
diffuse radiation (K↓,d) at the surface for NCEP/NCAR and CERES, respectively. Finally,
sub-figure e shows the grid-wise difference inK↓ between NCEP/NCAR and CERES data.
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Figure 4.5: Site-level mean bias error (MBE) in incoming shortwave radiation (K↓) at
the surface for a NOAA-CIRES-DOE, b JRA-55, c MERRA-2, and d ERA5 gridded data
compared to common GEBA observations for Common Period I (2001-2015). Sub-figures
e, f, and g show the corresponding MBE in incoming diffuse radiation (K↓,b) at the surface
for NOAA-CIRES-DOE, MERRA-2, and ERA5, respectively.

The site-level MBE patterns of K↓ and K↓,d are consistent with the overall evaluation

in the previous subsection. The reanalysis products show a positive K↓ bias for the ma-

jority of the GEBA sites (80.5% for NOAA-CIRES-DOE, 98.9% for NCEP/NCAR, 90%

for JRA-55, 94.7% for MERRA-2, and 78.9% for ERA5). The NCEP/NCAR reanaly-

sis has the highest K↓ MBE among the datasets considered, and ERA5 and CERES have
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low biases. MERRA-2 underestimates K↓,d for almost all the sites (99.7%; Fig. 4.1f)

and ERA5 underestimates K↓,d for 91.9% of the sites (Fig. 4.5g). NOAA-CIRES-DOE,

NCEP/NCAR, and CERES overestimate K↓,d for 93.6%, 76.5%, and 98% of the sites,

respectively (Figs 4.5c, 4.5e, and 4.7d).

Since CERES captures both the magnitude and variability of K↓ more accurately than

the reanalyses (Table 4.2), here we use CERES as the reference to examine anomaly hot

spots of the reanalysis products for Common Period I (Figs 4.7c and 4.6). All the reanal-

ysis products show qualitatively similar positive biases from CERES over southern China

and along the western coast of South America. NOAA-CIRES-DOE shows some of the

largest localized anomalies; positive biases as much as 100 W m−2 are evident over east-

ern China. Overall, the differences are lower over Europe (0.0 ± 1.2 W m−2 for ERA5 to

46.6 ± 2.0 W m−2 for NCEP/NCAR; mean ± standard deviation) than over China (12.3

± 1.4 W m−2 for NOAA-CIRES-DOE to 65.6 ± 2.1 W m−2 for NCEP/NCAR) for all the

reanalysis products, a pattern consistent with site-level evaluations using GEBA observa-

tions (Figs 4.4 and 4.5). The closer value between CERES and the reanalyses over Europe

could be due to stronger constraints on the energy budget due to more quality-assured

assimilated meteorological observations over this region. For reference, the number of

common GEBA stations over Europe for Common Period I is 93, while there are only 10

over China; with similar sampling biases expected for assimilated variables. Another po-

tential factor is the influence of higher aerosol loading over China, which is not explicitly

represented in most of these datasets.
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Figure 4.6: Grid-wise difference in incoming shortwave radiation (K↓) at surface between
CERES data and a NOAA-CIRES, b JRA-55, c MERRA-2, and d ERA5, respectively for
Common Period I (2001-2015).

4.4.3 Annual Cycle

Figure 4.7 compares the northern hemisphere seasonal patterns in K↓,d, K↓, and kd among

the datasets and the GEBA observations in the northern hemisphere, using the site-months

common to the datasets and the GEBA observations for Common Period I. The complete

northern hemispheric mean seasonal patterns are given in Figs 4.7b, 4.7d, and 4.7f using

all the model grids. The GEBA observations are skewed towards middle to high latitudes;

thus Figs 4.7a and 4.7b shows a stronger K↓ and K↓,d seasonality than Figs 4.7b and

4.7d. For instance, the inter-seasonal range of K↓, or the difference between the monthly

maximum and monthly minimumK↓ for the average year, is 134.4 W m−2 in Fig. 4.7b and

178.8 W m−2 in Fig. 4.7a for CERES. The data products generally capture the observed

seasonality, showing much higher K↓ and K↓,d values in the summer than in the winter

(Figs 4.7a and 4.7c). Among the datasets, the inter-seasonal range in site-corresponding

K↓ varies from 178.8 W m−2 in CERES and ERA5 (181 W m−2 for GEBA) to 207.7 W
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m−2 in NCEP/NCAR according to Fig. 4.7a.

Figure 4.7: Seasonal variation in a incoming shortwave radiation (K↓), c incoming dif-
fuse radiation (K↓,d), and e diffuse fraction (kd) at the surface for all northern Hemisphere
common GEBA sites and the grids overlaying the sites for Common Period I (2001-2015).
Sub-figures b, d, and f show the corresponding northern hemisphere means from the grid-
ded products for the same period. In all cases, the black lines show the standard deviations
(of the site-level data for a, c, and e and the spatial variability of the grid values for b, d,
and f).

Generally, there is a larger inconsistency in the K↓,d seasonal variations than the K↓

seasonal variations among the datasets. Particularly, the CERES data shows a more pro-

nouncedK↓,d seasonality (inter-seasonal range = 101 W m−2) than the GEBA observations

(inter-seasonal range = 70 W m−2) and the other data products (average inter-seasonal
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range of 61.6 W m−2 for the other products; Fig. 4.7c).

Globally, the observed kd is higher in winter and lower in the summer (Fig. 4.7e). The

inter-seasonal range in kd varies substantially between the products, with CERES showing

the lowest range of 0.03 and NOAA-CIRES-DOE showing the highest range of 0.22 (Fig.

4.7e). In comparison, the inter-seasonal range in the corresponding GEBA observations is

0.13. The muted seasonality in CERES is evidently driven by the stronger seasonality for

K↓,d in this dataset. Combining all the gridded products, for the northern hemisphere, the

spatially averaged inter-seasonal range in kd is only 0.05 (Fig. 4.7f), compared to 0.13 for

the grids corresponding to the GEBA observations; evidently due to the higher frequency

of GEBA observations in the higher latitudes.

4.4.4 Long-term Trends over Europe and China

We analyze the long-term trends in K↓ and K↓,d in Europe and China in two ways. First,

we calculate the trends using the reanalysis products for Common Period II (1980-2015)

and all grid cells in these two regions. The results are presented as solid bars in Fig.

4.8 with the statistical significance of the trends noted. Over Europe, NOAA-CIRES-

DOE shows a slightly negative trend and the other four reanalysis products show clearly

positive trends in K↓, with the rate of change varying from -0.07 W m−2 per decade in

NOAA-CIRES-DOE to 2.02 W m−2 per decade in ERA5 (Fig. 4.8a). The average trend

of the five products is 0.80 ± 0.74 W m−2 per decade (mean ± standard deviation; here

standard deviation indicates variation among the five products). The regional mean K↓,d

shows an increasing trend according to NCEP/NCAR and decreasing trends according to

the other three products (NOAA-CIRES-DOE, MERRA-2, and ERA5), with the rate of

change ranging from 0.39 W m−2 per decade in NCEP/NCAR to -1.6 W m−2 per decade

in MERRA-2 (Fig. 4.8b), with a four-product mean value of -0.86 ± 0.75 W m−2 per

decade. JRA-55 does not provide K↓,d data.
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Figure 4.8: Long-term trends from gridded and observed data. Sub-figures a and b show
trends in incoming shortwave radiation (K↓) and incoming diffuse radiation (K↓,d) at the
surface over Europe. The long-terms trends in the GEBA observations with at least 10
years of data in Common Period II (1980-2015), as well as the corresponding trends for
the overlapping grids from the gridded products, are shown with circles. The hatched bars
show the mean (± standard error) of the trends based on these circles. Equations of lines
representing the associations between the observed and the corresponding modeled trends
are in the legends. The solid bars show the grid-area averaged regional values for the
gridded reanalysis products for the entire period (1980-2015), and the error bars represent
the standard errors. Sub-figures c and d are similar, but for China. The p-values of the grid-
averaged trends are indicated by asterisks, with three asterisks representing p<0.0001, two
for p<0.001, and one for p<0.05.

Over China, the trends in K↓ are less consistent than those over Europe. Two prod-

ucts (MERRA-2 and JRA-55) show decreasing trends, and three (NOAA-CIRES-DOE,

NCEP/NCAR, and ERA5) show increasing trends. The rate of change varies from -0.73

W m−2 per decade (MERRA-2) to 1.76 W m−2 per decade (NCEP/NCAR), giving a five-

product mean of 0.41± 0.88 W m−2 per decade. In contrast, all products show decreasing

trends in K↓,d, giving a four-product mean rate of change of -0.72 ± 0.39 W m−2 per

decade (Fig. 4.8d).

Second, we analyze the time trends using the GEBA data and the reanalysis data from

the grids containing these GEBA sites and for the same measurement years. Since the

number of sites which fulfill all the quality-control criteria, including the homogeneity

test, are small (see Methods section), we stress that these do not necessarily represent
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regional trends. Instead, we examine whether the gridded products capture the observed

trends for the corresponding periods. The trends for the individual stations included for

each region are represented by the circles in Fig. 4.8, with the overall mean and standard

errors for these shown as hatched bars. For 62.5% (15 of 24) of the GEBA sites considered

over Europe, we see a positive trend, with an average increasing trend in K↓ (2.18 W m−2

per decade), which is consistent with existing studies (Wild 2012, 2016; Schwarz et al.,

2020). None of the reanalysis products capture the direction of the mean brightening trend

for the corresponding grids and years, though the regressions between the observed and

modeled trends inK↓ are positive for ERA5 (r = 0.28) and MERRA-2 (r = 0.32). ForK↓,d,

only half of the six GEBA sites show decreasing trends. Among the reanalysis products,

only ERA5 captures (weakly) the corresponding trends (r = 31).

Over China, 3 of the 4 GEBA sites show a brightening trend (Fig. 4.8c), with none of

the corresponding reanalysis products capturing the variability of trends between the sites.

On the contrary, for K↓,d, all the four considered GEBA sites show an increase over time,

with all the reanalysis products other than NCEP/NCAR capturing the positive direction

of the mean trend.

Several previous studies have examined the long-term trends in K↓ over Europe and

China owing to the larger data coverage and strong temporal trends in these regions

(Samukova et al., 2014; Lorenzo et al., 2015; Feng et al., 2018; Schwarz et al., 2020).

Although the magnitude of the trends varies across studies depending on quality control

of the data and the selection of the observation sites and the time periods of interest, most

studies have found strong brightening over Europe and weak to negligible brightening over

China since the 1980s. For Europe, Lorenzo et al. (2015) found an increasing trend of 3.2

W m−2 per decade for K↓ between 1986 and 2012. Similarly, Pfeifroth et al. (2018) found

increasing trends between 1.9 W m−2 and 2.4 W m−2 per decade for 1983-2015. Most

recently, Schwarz et al. (2020) found an increase in the K↓ absorbed by the surface at a
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rate of 1.7 W m−2 per decade in Europe for the 31-year period between 1985 and 2015.

For the time periods corresponding to the three studies mentioned above, we calculate the

five-product mean brightening trends of 0.63 W m−2 per decade, 0.68 W m−2 per decade,

and 0.57 W m−2 per decade, respectively. Over China, strong brightening trends (by 10.6

W m−2 per decade) have been seen for clear-sky conditions between 2006-2018 (Yang et

al., 2019). For all-sky conditions, the absorbed K↓ at the surface showed a dimming trend

of -0.7 W m−2 per decade between 1985 and 2009 and a brightening trend of 1.4 W m−2

per decade between 2011 and 2015 (Schwarz et al., 2020). We find a five-product mean

increase in K↓ by 0.41 W m−2 per decade for Common Period II in China. The observed

increase in K↓ for the subset of GEBA sites in China is not captured by the reanalyses

over the corresponding sites. The overall regional brightening has also been found to be

missing in unconstrained CMIP5 model simulations (Moseid et al., 2020).

Observational constraints on long-term trends in K↓,d are much rarer, partly because

of the lack of sufficient ground stations that measure this variable, as well as higher uncer-

tainties in these measurements. For Europe, a couple of studies show decreasing trend in

K↓,d since the 1980s (Samukova et al., 2014; Wild et al., 2017). We also find a decreasing

four-product mean trend of -0.86 W m−2 per decade for Common Period II. For China,

there are more studies on long-term trends in K↓,d, generally showing a decrease in K↓,d

till the 1990s, followed by an increase till 2010 (Wang & Yang, 2014). For northern China,

K↓,d showed an increasing tendency from 1959 to 2016 according to a recent study (Feng

et al., 2018), but a strong decreasing tendency for the Beijing and Shenyang stations, both

in the northern China, according to another study (Wang et al., 2020). We find a decreasing

four-product mean trend in K↓,d of -2.93 (-0.72) W m−2 per decade for Common Period

II.
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4.4.5 Role of Clouds and Aerosols on Inter-Model Variability in Grid-

ded Products

Previous studies show overestimation of K↓ in reanalysis datasets due to the underestima-

tion of clouds (Zhao et al., 2013; Wild et al., 2015b; Loeb et al., 2019). Here, we separately

analyze the correlation of K↓,d and K↓,b with percentage cloud cover at the global scale,

both within the gridded products using annual averages and between the products using

multi-year averages for Common Period I (Fig. 4.9). The datasets show similar spatial

patterns in cloud cover (Fig. 4.10), but large differences in global mean values, ranging

from 52.3% in NCEP/NCAR to 66.5% in CERES. In general, products with lower cloud

cover have higher average K↓,b and lower K↓,d, which makes sense mechanistically. The

exception to this strong linear relationship (r2 = 0.96 for K↓,b and 0.92 for K↓,d; Fig. 4.9)

is NCEP/NCAR, which has the lowest cloud cover, but not the lowest K↓,d or the highest

K↓,b. Note that NCEP/NCAR does have the highest K↓ (Table 4.1). Thus, the issue is

the partitioning of K↓,d in the product. The underestimation of K↓,b and overestimation of

K↓,d in CERES may be due to the positive bias in not just percentage cloud cover (Kato et

al., 2018), but the well-known systematic overestimation in MODIS-derived cloud droplet

size (Painemal & Zuidema 2011). Larger particles lead to more forward scattering (Plass

and Kattawar 1968), which could contribute to the positive bias inK↓,d at the surface while

simultaneously reducing K↓,b.

121



Figure 4.9: Associations between percentage cloud cover and incident a diffuse radiation
(K↓,d) and b direct beam radiation (K↓,b) for Common Period I (2001-2015). Each colored
circle represents an annual mean value, while the black circle shows the multi-year average
for the gridded product. The lines of best fit and their equations are shown, both for
individual gridded products and across products (not considering NCEP/NCAR).
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Figure 4.10: Spatial distribution of cloud cover in a NOAA-CIRES, b NCEP/NCAR, c
JRA-55, d MERRA-2, e ERA5, and f CERES for Common Period I (2001-2015).

Although the relationships between annual cloud cover and annual K↓,b (and K↓,d) for

each gridded product are not consistently strong, we find the expected direction of sensitiv-

ity to cloud cover in all the datasets. The sensitivities are positive for K↓,d, ranging from

0.22 W m−2 per cloud cover percentage in MERRA-2 to 0.87 W m−2 per cloud cover

percentage in NOAA-CIRES-DOE, and negative for K↓,b, ranging from -0.47 W m−2

per cloud cover percentage in MERRA-2 to -2.89 W m−2 per cloud cover percentage in

NOAA-CIRES-DOE. Overall, the collinearity between cloud cover andK↓,b is higher than

for K↓,d. The individual scatterplots between K↓,d (and K↓,b) and cloud cover percentage

are also in Fig. 4.11. Although there are large uncertainties in both cloud and aerosol

representation in coarse-gridded models, that the inter-product variability of these atmo-

spheric constituents controls the inter-product variability in the surface radiation fields is
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a reasonable assumption. This is because the top of the atmosphere incoming K↓ has

strong theoretical constraints and varies between 340.3 W m−2 in NOAA-CIRES-DOE to

341.9 W m−2 in NCEP/NCAR for Common Period I. It is harder to separate the relative

importance of the individual constituents due to the structural and parametric differences

between these products. Cloud-radiation interactions depend not only on aerial coverage

of clouds, but also on cloud thickness and cloud optical properties, usually represented

by the cloud optical depth (COD). For instance, an underestimation of cloud cover and an

overestimation of COD can lead to a positive bias in K↓,b and a negative bias in K↓,d with

minimal impact on overall K↓, which is seen in ERA5 (Table 4.2). In contrast, CERES,

which has much higher cloud cover than ERA5 (Fig. 4.9), shows a negative bias in K↓,b

and a positive bias in K↓,d, which may be due to either the larger cloud droplet size or

underestimated COD or a combination of both (Minnis et al., 2011). The overestimation

of optically thick clouds in models compared to satellite observations has been known for

a while (Zhang et al., 2005) but has not been used to specifically examine the differences

in direct/diffuse partitioning among models. Although COD is not publicly archived in

most of these reanalysis products, preventing such an analysis in the present study, ac-

curately representing both overall cloud cover and COD might reduce this large variabil-

ity in direct/diffuse partitioning across these products. The reanalysis products also have

large differences in aerosol representation. The NOAA-CIRES-DOE and NCEP/NCAR

reanalysis do not include tropospheric aerosols (although NOAA-CIRES-DOE has vol-

canic aerosols), ERA5 and JRA-55 consider aerosol climatology, and MERRA-2 includes

time-varying assimilated aerosols and is the only one of these products that archive AOD.

Thus, a similar analysis using all gridded products is not possible for the inter-product

variability in aerosols.
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Figure 4.11: Associations between annual average percentage cloud cover and surface
radiation fields (incident diffuse radiation K↓,d and direct beam radiation K↓,b) for Com-
mon Period I (2001-2015) for each of the gridded products. The lines of best fit and their
equations are shown.

We also examined the long-term trends in clouds and aerosols for Europe and China.

Figure 4.12 (a to f) shows the correlation between the trends in cloud cover and the trends

in K↓ and K↓,d for Europe and China among the six datasets. Common Period I is used

for CERES and Common Period II for the reanalysis products. For Europe in particular,

these correlations are strong (r2 = 0.92 for K↓,b and 0.80 for K↓,d; Figs 4.12c and 4.12e),

suggesting that the strength of the brightening over these regions in the gridded data is

primarily a function of the trends in the modeled cloud cover. All the datasets other than

JRA-55 show a decrease in cloud cover over this region between 1980 and 2015 (Com-

mon Period II). We also calculate the trend in AOD for Europe from the MERRA-2 data

(Fig. 4.12g), showing a decreasing trend of 0.04 per decade during the same period. The

125



decrease in aerosol for Europe has been previously seen using both observations and mod-

els (Yang et al., 2020). Since aerosols generally increase K↓,d, keeping all other factors

constant, this would explain the simultaneous decadal increase in K↓ and decrease in K↓,d

over Europe. For China, cloud cover decreases in most of the gridded products (other than

JRA-55), with the magnitudes of change roughly half of that seen over Europe. The cor-

relation between trends in cloud cover and trends in K↓ is relatively weak, though this is

primarily driven by MERRA-2 being an outlier (r2 increases to 0.88 if MERRA-2 is not

used in this regression). Incidentally, only MERRA-2 assimilates observations of aerosols,

showing an increase in AOD by 0.03 per decade over this region (Fig. 4.12h). Moreover,

according to the grid-averaged trends, K↓,d decreased during this period over China. This

pattern could be due to the relative change in absorbing and scattering aerosols over the re-

gion during this time period. MERRA-2 data shows a stronger increase in absorbed AOD

compared to scattered AOD over China during Common Period II, suggesting a relative

enhancement in absorbing aerosols (Fig. 4.12h). Even though the absorbing component

of total AOD in MERRA-2 is modeled, not assimilated, observations bear out the increase

in absorbing aerosols over China during this period (Schwarz et al., 2020).
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Figure 4.12: Linear regressions between trends in grid-area averaged percentage cloud
cover and trends in a incoming shortwave radiation (K↓) over Europe, b K↓ over China, c
incoming diffuse radiation (K↓,d) over Europe, d K↓,d over China, e direct beam radiation
(K↓,b) over Europe, and f K↓,b over China for all the gridded products during Common
Period II (1980-2015) for the reanalysis products and Common Period I (2001-2015) for
CERES. The equations for the lines of best fit are annotated. Sub-figures g and h show
the trends in grid-area averaged aerosol optical depth (AOD), separated into the scattering
and absorbing components, for Common Period II as assimilated by MERRA-2. For g
and h, the black lines show the standard errors. The p-values are indicated for g and h
by asterisks, with three asterisks representing p<0.0001, two for p<0.001, and one for
p<0.05.

Since in addition to cloud cover, MERRA-2 assimilates gridded AOD, we can estimate

the sensitivity of the trends in K↓ and K↓,d due to the trends in cloud cover and aerosols
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by solving this system of two equations:

KR,Tr,Eu

KR,80,Eu

= a
CLDR,Tr,Eu

CLDR,80,Eu

+ b
AODR,Tr,Eu

AODR,80,Eu

(4.1)

KR,Tr,Ch

KR,80,Ch

= a
CLDR,Tr,Ch

CLDR,80,Ch

+ b
AODR,Tr,Ch

AODR,80,Ch

(4.2)

Here subscripts KR,Tr,Eu and KR,Tr,Ch represent the trends in the MERRA-2 gridded

products for Europe and China, respectively. The variables considered are the incoming

radiation (KR; either K↓ or K↓,d), the cloud cover (CLD), and AOD. Since these variables

have different ranges, they are normalized by the value of the variable for the base year

(1980; denoted by subscripts R, 80,Eu and R, 80,Ch) to represent the fractional rates of

change. For reference, CLDR,80,Eu and CLDR,80,Ch are 63.56% and 47.95%, respectively,

while AODR,80,Eu and AODR,80,Ch are 0.26 and 0.18. Finally, a and b are the unitless co-

efficients that give the sensitivity of the fraction rate of change in the radiation components

to the fractional rate of change in CLD and AOD, respectively. Simultaneously solving

these two equations, we find that both a and b are negative for fractional rate of change in

K↓ (a = -0.184, b = -0.037) and positive for the corresponding fractional rate of change

in K↓,d (a = 1.074, b = 0.124). These values make sense physically since an increase

in aerosols and clouds tends to decrease K↓ and increase K↓,d. In terms of magnitude,

clouds play a stronger role than aerosols; with the sensitivity being almost 9 times higher

for clouds for K↓,d and 5 times stronger for K↓. Over Europe, the effect of clouds and

aerosols reinforce each other, with both decreasing, thereby increasing K↓ and decreasing

K↓,d. Over China, the total effect of aerosols, controlled by both the lower sensitivity to

aerosols and the much higher fractional rate of change in AOD, overwhelm the impact of

clouds, with K↓ decreasing in spite of a decrease in cloud cover.

We use this framework to constrain the sensitivity of K↓ and K↓,d to CLD and AOD in

the MERRA-2 dataset because of its conceptual simplicity. For comparison, we also used
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multi-linear regressions to examine the trend inK↓ andK↓,d as a function of grid-averaged

CLD and AOD separately for Europe and China, given by the equation:

KR

KR,80

= β0 + β1
CLDR

CLDR,80

+ β2
AODR

AODR,80

(4.3)

Here the annual average values ofK↓ andK↓,d (KR), CLD (CLDR), and AOD (AODR)

are normalized by their 1980 values and β0, β1, and β2 are the coefficients of regression.

Although the results are different over the two regions since they are not mathematically

constrained by the same sensitivity as done for Eqs 4.1 and 4.2, we get the same signs and

similar relative magnitudes of the regression coefficients. β1 and β2 are always positive for

K↓,d and always negative forK↓. Clouds play a stronger role in both Europe and China for

K↓ (β1/β2 = 14.52 and 6.26, respectively) and K↓,d (β1/β2 = 3.57 and 8.03, respectively).

4.5 Discussion and Summary

4.5.1 Comparison with Other Modeled and Satellite-Derived Estimates

We are not aware of any formalized attempts to evaluateK↓,d in current-generation CMIP6

models or their previous iterations. Although operational GCMs may sometimes lead re-

analysis products in model development efforts (for instance, frequently using prognostic

aerosols instead of prescribed aerosol distributions), many of the radiation codes and cloud

parameterizations used to generate the reanalysis products are also implemented in those

models. Additionally, that GCMs are run with less constraints on the atmospheric and sur-

face variables than reanalysis products suggests that there may also be wide disparities in

the K↓,d modeled by GCMs. We see evidence of this from two studies that have evaluated

K↓,d at larger scales. Mercado et al. (2009) used radiative transfer calculations to simulate

K↓,b and K↓,d globally. Using a subset of GEBA observations over Europe, Germany,
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and China, they evaluated their modeled K↓ and kd. For GEBA stations in Germany and

Europe, they found an underestimation in K↓ and an overestimation in kd. Over China,

their model overestimated K↓, but correctly simulated kd, suggesting an overestimation in

K↓,d. More recently, Chakraborty et al. (2021) used the latest version (version 6) of the

Community Atmosphere Model (CAM6; Gettelman et al., 2019) to simulateK↓,d andK↓,b

and evaluated the modeled values using all available GEBA observations. CAM6 overes-

timated K↓ and underestimated K↓,d, leading to an MBE of -0.08 for kd for all GEBA

sites.

Our evaluation of the CERES dataset shows that, while CERES does a great job at

capturing both the magnitude and variability in K↓ (Table 4.2), there are issues with the

direct/diffuse partitioning. CERES overestimates K↓,d and underestimates K↓,b, leading

to an overestimation in kd (roughly 0.09 for all GEBA sites; Table 4.2), potentially caused

by higher cloud fraction and cloud droplet size in satellite-derived products (Painemal &

Zuidema 2011; Kato et al., 2018). In this context, a few other satellite-derived K↓,d prod-

ucts also warrant discussion. Recently, Jiang et al. (2020) evaluated the K↓,d in a recent

dataset (JiEA) created using a deep learning algorithm and geostationary satellite measure-

ments (Jiang et al., 2019a). Using 39 observation sites over East Asia, they found much

better performance of the JiEA product compared to ERA5. Consistent with our results,

ERA5 underestimated K↓,d (MBE=-17.2 W m−2; -1.2 W m−2 for JiEA) over their study

area. The grid-area averaged kd over East Asia was 0.42 for JiEA and 0.35 for ERA5.

For China, which covers a large part of their study area, the grid-averaged kd for the same

time period (2007-2014) varies from only 0.27 in the MERRA-2 dataset to roughly double

that value (0.56) in the CERES data. Over Europe and Africa, the Copernicus Atmosphere

Monitoring Service (CAMS) provides K↓, K↓,d, and K↓,b estimates every 15 minutes

based on the Heliosat-4 method using Meteosat geostationary satellite observations (Qu et

al., 2017). We estimatedK↓,d over the region of Europe (‘AGATE’) covered by these satel-
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lites for Common Period I and found the regional average K↓,d to range from 52.8 W m−2

in MERRA-2 to 102.6 in CERES versus a value of 65.4 W m−2 in CAMS. Another recent

study produced global datasets of K↓, total photosynthetically active radiation (PAR) and

its diffuse component from 2000 to 2016 by combining a radiative transfer model with an

artificial neural network trained using MODIS data (Ryu et al., 2018). They calculated a

global average ratio of 0.41 for diffuse PAR to total PAR and 0.46 for total PAR to K↓.

Of the data products we consider, only MERRA-2, NOAA-CIRES-DOE, and NCEP/NCAR

publicly archive the diffuse portion of PAR. For Common Period I, we find large differ-

ences in these estimates for the three datasets for both diffuse PAR to total PAR (0.37 for

MERRA-2; 0.54 for NOAA-CIRES-DOE; 0.46 for NCEP/NCAR) and for total PAR to

K↓ (0.44 for MERRA-2; 0.52 for NOAA-CIRES-DOE; 0.61 for NCEP/NCAR). In com-

parison, the diffuse PAR to total PAR and total PAR to K↓ in the CAM simulations by

Chakraborty et al. (2021) were 0.41 and 0.51, respectively.

4.5.2 Limitations

Point observations have been frequently used to compare against gridded estimates of sur-

face radiation (Markovic et al., 2009; Zhao et al., 2013; Wild et al., 2015b). However,

radiation transfer calculations in GCMs and reanalyses are based on the plane-parallel ap-

proximation, the assumption of one-dimensional atmospheric grids with horizontal planes

as the upper and lower bounds, for computational efficiency. The real atmosphere has 3D

cloud structures, particularly relevant for cloud-radiation interactions. For instance, cloud

side illumination is the interception of radiation due to the existence of cloud sides in the

real atmosphere, which are not captured by their plane-parallel approximations; a major

issue at high solar zenith angles (Schäfer et al., 2016). Similarly, for low zenith angles,

cloud side leakage causes more radiation to pass through the edges of clouds and reach

the surface, which would be blocked in a plane-parallel representation (Ham et al., 2014).
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The overall result of these two mechanisms is generally an underestimation in simulated

K↓ even when the cloud fraction is correctly captured by the approximation (Okata et al.,

2017). Thus, these two effects on their own cannot explain the systematic overestimation

in K↓ we find in the gridded products (Table 4.2). Cloud sky leakage would normally

lead to more forward scattering, and may thus increase K↓,d in regions with low zenith

angle, which we do find in the GEBA observations compared to the MERRA-2 and ERA5

datasets. The effect of cloud side illumination, on the other hand, primarily blocks K↓,b

(Hogan & Shonk 2013), which would overestimate K↓,b in GCMs, which is seen in all

reanalysis products other than NOAA-CIRES-DOE (Table 4.2).

These problems are most serious at shorter time scales, as patchy clouds can cause

large fluctuations in the observations at individual sites. Thus, since the signs of these

3D effects largely depend on zenith angle, the errors are reduced substantially when using

monthly means since it averages over the various zenith angles (as was done here) and

by combining the biases over multiple sites in a region. Note that the bias errors found

here may also be related to other aspects of the 3D cloud structure, such as how overlap

of clouds at various heights is represented (Wang et al., 2016). However, the inter-model

variability is not affected by these issues since all the products considered use similar ap-

proximations. We find that this variability for both K↓,d and K↓,b is strongly controlled by

cloud fraction (Fig. 4.8). Additional differences are also expected due to the shortwave

parameterizations used in these datasets that convert the cloud representations to the radi-

ances across wavelength channels. However, such an evaluation requires a modeling setup

that controls for the different inputs to the radiative transfer models used in the gridded

products and hyperspectral observations for validation (Aumann et al., 2018).

A quantitative comparison of the long-term trends using observations requires consis-

tent data coverage. The GEBA data are not always appropriate for this purpose because the

trends in K↓,d and K↓ (circles and hatched bars, Fig. 4.8) are derived from two different

132



subsets of the data (there are more K↓ observations than K↓,d observations). Moreover,

even within Common Period II, the data coverage changes over time. This lack of con-

sistent data coverage is particularly relevant for China since many studies find a reversal

of the trends somewhere between 1990 and 2000, potentially influenced by the instrument

changes after 1993 (Wang & Yang, 2014). We try to account for potential breakpoints in

the trends by testing for homogeneity of the time-series. However, this reduces the number

of available stations substantially, particularly over China (Fig. 4.8). As such, although

the inter-model variability in long-term trends in the gridded datasets illustrates the dif-

ferences between these models, we advise caution when talking about the ‘real’ regional

trends using GEBA observations, particularly for K↓,d given the dearth of available ob-

servations. For China, one alternative is to use data from the China Meteorological Data

Service Center (http://data.cma.cn). However, as seen in Wang et al. (2020), after testing

for homogeneity, only 12 stations are available with long-term observations of both K↓

and K↓,d. An in-depth analysis of the influence of station and year range selection on

these trends is in Schwarz et al. (2020), though they do not focus on K↓,d. Given that we

find that the gridded data cannot generally capture either the direction or the variability in

trends across the available GEBA sites for the corresponding time-periods, further work

is necessary to evaluate long-term trends in K↓,d across CMIP6 models with consolidated

observational databases that include both regional and global networks.

4.5.3 Summary

We find large differences inK↓,d, K↓,b, and kd across current-generation gridded products.

The variability is evident from the monthly to the annual scales and show large biases from

observational benchmarks. For 2001-2015, the range of variability is 10.7% for global

mean K↓ (185.4 to 205.3 W m−2), 60.4% for global mean K↓,b (82.8 to 132.8 W m−2),

94.3% for global mean K↓,d (52.8 to 102.6 W m−2), and 96.4% for global mean kd (0.28
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to 0.55). The variability between these products is statistically explained by the biases

in modeled cloud fraction. Long-term (1980-2015) trends in the two variables also differ

over Europe and China and are not captured well by the gridded products. These inter-

model differences in K↓,d would affect Earth system simulations, particularly relevant for

surface climate and for estimating solar energy potential. Thus, we suggest comprehensive

comparisons of simulated kd in the CMIP6 models to better identify potential deficiencies

in current-generation atmosphere models.
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Chapter 5

Developing a Bias-Corrected Global
Radiation Dataset Using Supervised

Learning

Accepted: Chakraborty, T. & Lee, X. Using supervised learning to develop BaRAD, a

40-year monthly bias-adjusted global gridded radiation dataset. Nature Scientific Data
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5.1 Abstract

Diffuse solar radiation is an important, but understudied, component of the Earth’s surface

radiation budget, with most global climate models not archiving this variable and a dearth

of ground-based observations. Here we describe a global 40-year (1980 - 2019) monthly

database of total shortwave radiation, including its diffuse and direct beam components,

called BaRAD (Bias-adjusted RADiation dataset). The dataset is based on a random for-

est algorithm trained using Global Energy Balance Archive (GEBA) observations and ap-

plied to the Modern-Era Retrospective analysis for Research and Applications, Version 2

(MERRA-2) dataset at the native MERRA-2 resolution (0.5◦ × 0.625◦). The dataset pre-

serves seasonal, latitudinal, and long-term trends in the MERRA-2 data, but with reduced

biases than MERRA-2. The mean bias error is close to 0 (root mean square error = 10.1

W m−2) for diffuse radiation and -0.2 W m−2 (root mean square error = 19.2 W m−2) for

the total shortwave. Studies on atmosphere-biosphere interactions, especially those on the

diffuse radiation fertilization effect, can benefit from this dataset.

5.2 Background & Summary

The Earth’s climate is driven by solar (shortwave) radiation and its interactions with the

different components of the Earth system. The shortwave radiation is attenuated by scatter-

ing and absorption by atmospheric aerosols, clouds, and gases, with the remaining portion

reaching the Earth’s surface as direct beam radiation (K↓,b). A portion of the scattered

radiation also reaches the surface, which deviates from its original path and is known as

diffuse radiation (K↓,d). The sum of K↓,b and K↓,d, or the total incident shortwave radia-

tion at the surface (K↓), influences local weather and climate, the hydrological cycle, and

the carbon budget. There is also strong scientific interest in K↓,d because a high diffuse
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fraction can increase agricultural and ecosystem productivity and enhance the terrestrial

water flux to the atmosphere through increased photosynthesis in normally shaded parts of

the plant canopy, a phenomenon known as the diffuse radiation fertilization effect (Gu et

al., 2003; Mercado et al., 2009; Rap et al., 2018).

Current Earth System Models (ESMs) generally overestimate K↓ compared to obser-

vations, primarily due to errors associated with parameterizations of clouds and aerosols

(Markovic et al., 2009; Bosilovich et al., 2011; Kennedy et al., 2011; Zhang et al., 2016).

This overestimation would cause artificial surface warming, with undesired consequences

on atmosphere-biosphere interactions (Wild et al., 2016; Chakraborty & Lee, 2019). Al-

though similar evaluations of ESM K↓,d are not available, large differences are reported

for K↓,d between reanalysis datasets and observations (Chakraborty et al., 2021). The bias

in K↓,d in these gridded datasets is not consistent in direction, unlike that for K↓. Such bi-

ases may contribute to uncertainties in modelling surface energy and carbon budgets and

impact optimum placement of concentrating solar power systems (Oliveira et al., 2011;

Lee et al., 2016).

Several previous studies have examined the biases in modeled K↓ using the clearness

index (kt). This index, defined as the ratio between surface incident and extraterrestrial

radiation, captures the combined impact of aerosols, clouds, and gases on atmospheric

transmittance on solar radiation (Zhao et al. 2013; Boilley et al., 2015; Trolliet et al.,

2018). These atmospheric constituents attenuate solar radiation as it moves through the

atmospheric column. Although kt, a measure of the total light extinction, directly affects

K↓,b and therefore exerts a strong control on K↓, it is only tangentially related to K↓,d.

It is known that K↓,d is primarily controlled by the abundance of scattering agents in the

atmosphere, as well as their degree of forward scattering (Plass and Kattawar, 1968). An

atmospheric scattering agent that reduces K↓,b may actually increase K↓,d. Thus, a new

approach is required to correct biases in K↓,d.

137



In recent years, machine learning algorithms have been used to reduce biases in radia-

tion fields derived from reanalysis products or derive the fields from satellite observations

(Zhou et al., 2017; Frank et al., 2018; Yang et al., 2018; Wei et al., 2019; Hao et al.,

2020; Peng et al., 2021). By training against observed data, these algorithms can capture

previously unknown relationships between actual and gridded variables, generally leading

to improvements over traditional parametric and multi-ensemble averaging techniques22.

However, the majority of these algorithms have been implemented at the regional scale,

particularly over China, Europe, and the US, with a focus on the total K↓. For reasons

briefly described above, it is also important to develop a generalizable bias-correction al-

gorithm for K↓,d. Of note, a recent study developed a global hourly K↓,d dataset using

a random forest algorithm on satellite retrievals from the Earth Polychromatic Imaging

Camera (EPIC)21, although this focused on a short period from June 2015 to June 2019.

A gridded data product after proper bias correction is especially welcome for tropical re-

gions where K↓,d measurements are rare but the diffuse fertilization effect is strong due to

high vegetation densities (Rap et al., 2018; Chakraborty et al., 2021).

In this paper, we describe the development of a new dataset of monthly gridded ra-

diation fields, including K↓, K↓,b, and K↓,d, from 1980 to 2019. We attempt to improve

historical global gridded estimates of K↓,d. through three major steps:

1. Examine the control of kt on biases in K↓, K↓,b, and K↓,d separately

2. Test bias-correction algorithms for K↓ and K↓,d, including a method based on kt, a

multiple linear regression (MLR) and a random forest (RF) model

3. Implement the best performing bias-correction algorithm to create a global 40-year

Bias-adjusted RADiation dataset, or BaRAD.
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5.3 Methods

5.3.1 Reanalysis Data

The gridded data reported here is based on the Modern-Era Retrospective analysis for

Research and Applications, version 2 (MERRA-2) global reanalysis dataset (Randles et

al., 2017). MERRA-2 improves upon the original MERRA dataset in several ways. It

adds an extensive aerosol assimilation by using bias-adjusted aerosol optical depth (AOD)

from satellite observations24. Unlike MERRA, MERRA-2 uses observed precipitation

to force the land-surface model (Reichle and Liu, 2014). It uses a newer version of the

Goddard Earth Observing System (GEOS-5) and assimilates newer satellite observations

of aerosols, clouds, and precipitation (Reichle et al., 2017). MERRA-2 is available from

1980 to present day at a grid resolution of 0.5◦ latitude and 0.625◦ longitude. The variables

we wish to correct are monthly mean K↓ and K↓,d using predictors that physically control

transmitted radiation. They include estimates of atmospheric clouds and aerosols, as well

information about the position of the Sun, which controls energy input to the atmospheric

column.

5.3.2 Ground-Based Observations for Training and Validation

We used the Global Energy Balance Archive (GEBA) for training and validation of bias

correction algorithms. GEBA is a comprehensive observational data repository of the

components of the Earth’s surface energy budget (Gilgen & Ohmura, 1999). The latest

version of the database has roughly 2500 unique stations (Wild et al., 2017). Here we used

the monthly meanK↓ andK↓,d stored in the database. The data were screened with several

quality control steps. We only selected the monthly mean values lower than 600 W m−2

for K↓ and 250 W m−2 for K↓,d. Cases where the ratio of modeled to observed monthly
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means exceed 5 were ignored. Finally, only sites with all 12 months of available data were

selected to avoid biased representation across seasons. After these data screening steps,

we obtained 935 unique sites with 134541 site-months of data for K↓ and 290 unique sites

with 28880 site-months for K↓,d between 1980 and 2017 (Fig. 5.1). Monthly mean K↓,b

was computed as the difference between K↓ and K↓,d.

Figure 5.1: Distribution of GEBA sites used for evaluating and training bias-correction
algorithms in the present study for a shortwave radiation and b diffuse radiation.
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5.3.3 Bias-Correction Algorithms

We tested three bias correction algorithms, including a technique based on clearness index

and two data-driven algorithms. Several studies have used clearness index kt as a threshold

for designating sky condition or for estimatingK↓ (Iziomon et al., 2000; Zhao et al., 2013;

Jiang et al., 2015). In Zhao et al. (2013), the bias in K↓ (bm) is related to kt in a linear

fashion:

bm = b0.kt + b1 (5.1)

Here b0 is the sensitivity of bm to kt, and b1 is the model bias ratio under completely

cloudy conditions. In their study, bm is given as

bm =
KR −KO

KR

(5.2)

whereKR andKO are modeled and observed values, respectively. Clearness index is given

by

kt =
K↓,o
KTOA

(5.3)

where KTOA is the extra-terrestrial radiation at the top of the atmosphere and K↓,O is the

observedK↓ value. Their method also accounts for site elevationH . Here we used a linear

model as a function of kt and H to correct K↓

K↓=β0kt + β1H + β2 (5.4)

where β0, β1, and β2 are empirical coefficients. A linear model of the same form was also

used to correct K↓,d. Since kt involves observed K↓ (Eq. 5.1), Eq. 5.5 cannot be used
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to correct biases in gridded data when observations are not available. Thus, we consid-

ered two variations of this algorithm, one using observed K↓ (K↓,O) and site elevation to

calculate clearness index, called the kt,O model, and the other using grid-averaged terrain

elevation (HR) and the clearness index calculated from modeled K↓ (K↓,R), given by:

kt =
K↓,R
KTOA

(5.5)

which we call the kt,R model.

The second algorithm, a multi-linear regression (MLR), expresses the dependent vari-

able as a linear combination of predictors. In the case of K↓, it takes the following form

K↓,O = β0K↓,R + β1SAOD + β2AAOD + β3COD + β4CF + β5θz + β6HR + β7 (5.6)

where β0 to β7 are regression coefficients, K↓,O is the observed (or bias corrected) K↓,

K↓,R is the K↓ from the reanalysis without correction, SAOD is scattering aerosol optical

depth (AOD), AAOD is absorption AOD, COD is cloud optical depth, CF is cloud fraction,

and θz is mean zenith angle. The MLR procedure with the same set of predictors was

also applied to K↓,d. These predictors provide strong physical constraints on atmospheric

radiative transfer (Schwarz et al., 2020) with both COD and AOD being direct measures

of light extinction along the atmospheric column. The separation of AOD into SAOD and

AAOD is more important for K↓,d than for K↓ since while absorption of solar radiation

by aerosols would reduce both K↓,d and K↓,b, forward scattering would reduce K↓,b and

increase K↓,d. With the intent of developing a generalized algorithm, one regression is

used for the entire dataset. Since θz is one of the predictors, seasonal and latitudinal effects

is accounted for to some extent. The algorithm was implemented using the stats package

on the R programming language.
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The third algorithm is a random forest (RF) regression technique (Breiman et al. 2001).

Unlike the MLR model, the RF regression does not assume a standard linear structure of

the relationship; instead it derives the relationship from the training data using an ensemble

of decision trees. This relationship (for the total incoming radiation) can be expressed in a

generic form as:

K↓,O = f(K↓,R, SAOD,AAOD,COD,CF, θz, HR). (5.7)

This random forest regression was implemented using the R Random Forest package.

The default minimum size of terminal nodes (5) was used, but the maximum number of

trees to generate was set to 2000. In most folds, the models converged before reaching this

limit.

We used a 10-fold cross-validation technique to evaluation the performance of these

algorithms. The entire GEBA dataset was randomly partitioned into 10 equal subsets. One

of the ten subsets was used for validation and the other nine for training. The process was

repeated 10 times. The accuracy was quantified using the coefficient of determination (r2),

the root mean square error (RMSE), and the mean bias error (MBE). Cross-validation is

desired for the RF algorithm because it is prone to overfitting and using multiple folds al-

lows us to examine the consistency of the results across different training/validation splits.

The two linear models (Eqs 5.4 and 5.6) are not prone to overfitting. However, because

they are sensitive to outliers, cross-validation was also done to estimate the influence of

the training data selection on their performance.

The final data product (BaRAD) consists of monthlyK↓,K↓,b, andK↓,d corrected with

the best performing algorithm at the native MERRA-2 resolution. Here the algorithm was

trained on the whole quality screened GEBA dataset.
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Figure 5.2: Comparison of original and bias-adjusted MERRA-2 data with GEBA obser-
vations. a monthly mean diffuse radiation (K↓,d) and b total shortwave radiation (K↓,)
from MERRA-2 as well as the bias-adjusted estimates from the kt,R, MLR, and RF mod-
els. For the bias-adjusted estimates, the consolidated test data from all 10 folds are shown.
The red dashed lines represent the 1:1 relationship. Color indicates data density and the
statistical summaries of the evaluations are noted.

5.3.4 Clearness Index as a Predictor of Bias

Zhao et al. (2013) found systematic overestimation of K↓ in two reanalysis datasets. To

correct these model biases, they utilized the empirical relationship between the sensitivity

of bm to the observed kt. Here the sensitivity is the slope of the linear regression between

bm and kt,O. To illustrate how this sensitivity varies between K↓, K↓,d, and K↓,b, we

separately examined the associations between bm and kt,O.

Unsurprisingly, bm for K↓ and kt,O are negatively correlated, both overall and for the

common sites (Figs 5.3b and 5.3d). Here the common sites are those with simultaneous

measurements of K↓ and K↓,d. The sensitivity of bm to kt,O is -0.76 for all sites and -

0.8 for common sites, which are close to the value of -0.82 found by Zhao et al. (2013)

for MERRA in North America. Similarly, bm for K↓,b is also negatively correlated with
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kt,O, with the sensitivity being higher in magnitude (-1.23; Fig. 5.3c) than that for K↓,

suggesting that total atmospheric transmittance has a stronger effect on the biases in K↓,b

than on the biases in K↓. For K↓,d, the sensitivity of bm to kt,O is strong (-0.89; Fig.

5.3a), but the variability in the bias is not explained well by it (r2 = 0.15). Overall, the

coefficient of determination (r2) is highest for K↓,b and smallest for K↓,d, indicating that

clearness index is a poor predictor of model bias in K↓,d.

It is also important to note the intercept of the equations shown in Fig. 5.3. This

intercept represents the bm for a completely non-transmissive atmosphere (i.e. when kt,O

= 0). For both K↓ and K↓,b, this value is positive (0.96 for K↓,b; 0.5 to 0.53 for K↓). This

implies that the reanalysis overestimates K↓ under non-overcast skies, and its estimates

improve for clearer conditions. On the other hand, the intercept for the regression line

between the bm for K↓,d and kt,O is close to zero and the slope is negative, suggesting that

MERRA-2 K↓,d is underestimated even under completely clear conditions.

5.3.5 Comparing Bias-Correction Algorithms

Figure 5.2 shows the comparison of the original MERRA-2 and bias-adjusted values with

the GEBA observations. MERRA-2 underestimates K↓,d (MBE = -19.8 W m−2; Fig.

5.7a) and overestimates K↓ (MBE = 27.6 19.8 W m−2; Fig. 5.7b). Consistent with the K↓

overestimation, the modeled clearness index kt,R (0.54± 0.11) is higher than the observed

index kt,O (0.45 ± 0.12). This increased transmissivity may be caused by underestimation

of both clouds and aerosols, although clouds probably play a greater role since MERRA-2

has assimilated observations of AOD. Although an underestimation in clouds would also

explain the underestimation inK↓,d, the intercept of the equation in Fig. 5.3a (see previous

subsection) suggests that clouds are not the primary factor.

All the three algorithms reduce the MBE and RMSE ofK↓, K↓,b, and K↓,d in compari-

son to the original MERRA-2 values. The RF model performs the best overall, minimizing
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the RMSE and maximizing r2 for both K↓ (RMSE = 19.2 W m−2; r2 = 0.93) and K↓,d

(RMSE = 10.1 W m−2; r2 = 0.90). The Taylor diagrams for each individual fold (from the

10-fold cross-validation), along with the results for both the kt,O and kt,R models, are in

Figs. 5.4 and 5.5. The RF model consistently outperforms the others for every fold (with

one exception; see below). For K↓,d, the MLR model is not as good as the RF model but

is better than the kt,R and kt,O models (Fig. 5.4). For K↓, the kt,O model performs slightly

better than the RF model (Fig. 5.5), which makes sense since kt,O includes the observed

K↓, and thus this model, not useable to correct global datasets, is not shown in Fig. 5.2.

That the kt,O model outperforms the other models for K↓ but not for K↓,d confirms our

hypothesis that the kt model is not appropriate to address biases in K↓,d.
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Figure 5.3: Control of clearness index on biases in the MERRA-2 dataset. a Bias in
diffuse radiation (K↓,d), b bias in total shortwave radiation (K↓), c bias in direct beam
radiation (K↓,b), and d bias total shortwave radiation (K↓) for the sites that also have K↓,b
measurements. Statistical summaries of the associations are noted. Color indicates data
density.

Physically, the monthly average radiation components cannot be negative. However,

both the kt,R and MLR models predict a small fraction of negative values for K↓ (0.15%

for kt,R and 0.10% for MLR) and K↓,d (0.24% for kt,R and 0.01% for MLR). The RF

corrected values do not suffer from this drawback.
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Figure 5.4: Taylor diagrams for diffuse radiation. The 10 Taylor diagrams represent the
observed diffuse radiation (K↓,d) values and predicted values from MERRA-2, the kt,O
models, the kt,R models, the MLR models, and the RF models for all the folds used in the
cross-validation.
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Figure 5.5: Taylor diagrams for total shortwave radiation. The 10 Taylor diagrams repre-
sent the total shortwave radiation (K↓) values and predicted values from MERRA-2, the
kt,O models, the kt,R models, the MLR models, and the RF models for all the folds used
in the cross-validation.

MLR and RF use the same gridded variables as predictors. Fig.5.6 presents the relative

importance of each variable. For the MLR model, the importance score was obtained with

the method proposed by Lindeman et al. (1980). Briefly, since the stepwise addition of

predictors in the MLR model leads to different fractional contributions to the total r2 for

different permutations, this method considers all possible sequences of predictors and then

averages the fractional contributions across all the sequences to get the final importance

scores. The resulting fractional importance scores add up to unity. For the RF model, a

variable importance is the increase in mean square error (MSE) of the predicted values if

the same variable is removed from the model. A higher increase in MSE indicates that the

variable is more important to the performance of the RF model. For the MLR model, the
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most important predictors are the original MERRA-2 radiation value (relative importance

of 0.49± 0.0 forK↓; 0.46± 0.0 forK↓,d) and the solar zenith angle θz (relative importance

of 0.42 ± 0.0 for K↓; 0.45 ± 0.0 for K↓,d; Figs 5.6a and 5.9b). For the RF model, the two

best predictors are different for K↓,d and for K↓: For K↓,d, COD and CF have the highest

importance scores (224.4 ± 3.3% for COD; 138.2 ± 3.1% for CF), and for K↓, AAOD

and SAOD have the highest importance scores (223.6 ± 16.5% for AAOD; 206.5 ± 7.5%

for SAOD).

Figure 5.6: Rank of variable importance for bias-correction. a and b: Variable importance
scores for the MLR model; c and d: permutation importance scores for the RF model.

5.3.6 The BaRAD Dataset

Based on our cross-validation results, we choose the RF model to adjust the biases in the

MERRA-2 K↓ and K↓,d. We re-trained the model twice, one for K↓ and the other for

K↓,d, using the same predictors and all available GEBA observations. The trained model
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was used to bias-adjust the corresponding gridded monthly MERRA-2 fields from 1980 to

2019. The bias-adjusted dataset is referred to as BaRAD. The final BaRAD data deposited

in the public archive has gone through two additional post-correction adjustments. First,

because of lack of training data in polar regions, there exist a few positive values at some

polar grids during polar nights; these positive values constitute 6.5% of the entire dataset

for K↓. Here we have forced the bias-corrected K↓ and K↓,d to zero when the correspond-

ing MERRA-2 values are zero in those grids. Second, since K↓,d and K↓ were trained

separately, there is a small fraction of gridded data (less than 0.5%) where K↓,d exceeds

K↓, which is physically impossible. For these cases, we have set the K↓,d value equal to

K↓.

5.4 Data Records

The BaRAD dataset is available in netCDF format and includes the monthly values of K↓

(variable name: K down), K↓,d (variable name: K diff), and K↓,b (K dir) starting from

January, 1980. All variables have the unit of W m−2. The dataset can be accessed at

Figshare.

5.5 Technical Validation

5.5.1 Comparison of BaRAD Dataset with Other Data Products

In Figs 5.9, 5.8, and 5.9, we compare the spatial, zonal, and seasonal patterns in the

BaRAD dataset with the original MERRA-2 dataset. We also compare these patterns

with the latest version of the Clouds and the Earth’s Radiant Energy System (CERES)

surface radiation product (Kato et al., 2018). The CERES dataset provides satellite-based

estimates of the Earth’s radiative budget (from the surface to the top of the atmosphere)
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and clouds. The data are available globally at 1◦ × 1◦ resolution from 2000 onwards. The

latest version (CERES SYN1deg Ed4.1) of the dataset includes monthly estimates of both

K↓,d and K↓.

Figure 5.7: Spatial and latitudinal variability in diffuse radiation. Global pattern of dif-
fuse radiation (K↓,d) in a the BaRAD product, b the MERRA-2 dataset, and c the CERES
dataset. The grid-wise difference between BaRAD and e MERRA-2 and f CERES are also
shown. Sub-figure b shows the mean latitudinal variability of K↓,d in all three products.
The shaded areas represent the standard deviation. The area-weighted mean difference in
K↓,d (∆K↓,d) between the BaRAD data and the MERRA-2 and CERES products, respec-
tively, are shown at the top of sub-figures d and e, respectively.

Although the three datasets show broadly similar latitudinal (Figs 5.7c and 5.8c) and

spatial patterns (Figs 5.7d, 5.7e, 5.86d, and 5.8e), K↓,d in the BaRAD dataset is higher

than in MERRA-2 over the Sahara and India and higher than the CERES data over Aus-

tralia. For K↓, BaRAD shows a lower value than both MERRA-2 and CERES over the

tropical region. Figures 5.7 and 5.8 also show the mean area-weighted difference (∆K↓

and ∆K↓,d) between the BaRAD data and the MERRA-2 and CERES products, respec-

tively. The global mean K↓ and K↓,d are 167.9 and 75.8 W m−2, respectively, according

to BaRAD. In comparison, the global mean K↓ is higher at 185.4 W m−2 and 185.9 W

m−2 according to MERRA-2 and CERES respectively, and the global mean K↓,d is lower

at 52.6 W m−2 according to MERRA-2 and higher at 102.4 W m−2 according to CERES.
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Figure 5.8: Spatial and latitudinal variability in shortwave radiation. Global pattern of
shortwave radiation (K↓) in a the BaRAD product, b the MERRA-2 dataset, and c the
CERES dataset. The grid-wise difference between BaRAD and e MERRA-2 and f CERES
are also shown. Sub-figure b shows the mean latitudinal variability of K↓ in all three
products. The shaded areas represent the standard deviation. The area-weighted mean
difference inK↓ (∆K) between the BaRAD data and the MERRA-2 and CERES products,
respectively, are shown at the top of sub-figures d and e, respectively.

We calculate the seasonal trends of K↓,d and K↓ in the northern and southern hemi-

sphere grids (Fig. 5.9). We show the seasonality separately for the two hemispheres.

Although there are large differences in the magnitude of the three datasets the seasonal

variation is captured by the BaRAD dataset compared to the other two. For instance, the

highest northern hemisphere averages are during the boreal summer and the lowest values

are during the winter; vice versa for the southern hemisphere. These patterns are evident

in all the datasets.

153



Figure 5.9: Seasonal variability in all products. Monthly variability in diffuse radiation
(K↓,d) in MERRA-2, BaRAD, and CERES for a the northern hemisphere and c the south-
ern hemisphere. Sub-figures b and d are the same, but for total shortwave radiation (K↓).
The error bars show the standard errors for each month.

We also compare the BaRAD dataset with the newly developed K↓ and K↓,d datasets

from the EPIC measurements between 2016 and 201921. The EPIC instrument housed

on the Deep Space Climate Observatory (DSCOVR) satellite, takes narrow band spectral

images of the sunlit face of Earth for 10 channels every 60 to 100 min. The dataset gener-

ated by Hao et al. (2020) is available at 0.1◦ × 0.1◦ resolution and is based on a random

forest algorithm trained using in situ observations and the EPIC-derived variables (Hao

et al., 2019). Here we compare the available observations with the BaRAD data for the

same period. Although the EPIC-based dataset has several advantages over many existing

global estimates of K↓,d, namely the much higher spatial and temporal (up to hourly) res-

olution, it is not ideal for studying climatological trends. The EPIC instrument is affected

by cloud cover and downtime. Thus, the EPIC data are interrupted by data gaps, with

5.1% of days missing between 2016 and 2019. Moreover, the product is only available

over land. We regridded the EPIC-derived data to the native MERRA-2 resolution using a

nearest neighbor interpolation and compared the spatial and latitudinal trends in the K↓,d

and K↓ with the BaRAD values (Fig. 5.10). Overall, the global mean K↓,d in BaRAD is
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close to the EPIC-derived values, with the MBE of only -0.72 W m−2. Greater differences

are seen for K↓ with BaRAD underestimating it by 22.55 W m−2. Many of the differences

between the two products occur over Africa, as also seen from the latitudinal trends (Figs

5.10b and 5.10d). It is important to note that the in situ observations used in Hao et al.

(2020) to evaluate the product lacks spatial representation over central Africa, while the

GEBA observations are much more frequent here, at least for K↓ (Fig. 5.1). For K↓,d,

both GEBA and the datasets used in Hao et al. (2020) are sparse, which could explain the

low ∆K↓,d for this variable.
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Figure 5.10: Comparison of spatial and latitudinal variability in total shortwave radiation
and diffuse radiation between the BaRAD product and EPIC-derived estimates. Spatial
patterns of the grid-wise difference in a diffuse radiation (K↓,d) and b total shortwave
radiation (K↓) over land. Sub-figure b and d show the mean latitudinal variability of K↓,d
and K↓ over land for the two products. The shaded areas represent the standard deviation.
The area-weighted difference inK↓,d (∆K↓,d) andK↓ (∆K↓) between the BaRAD product
and the EPIC-derived dataset are shown at the top of sub-figures a and c, respectively.

5.5.2 Long-term Trends

Figures S7a, S7b, S7c, and S7d show the 40-year trend in K↓ and K↓,d in the MERRA-2

and the BaRAD dataset for the two hemispheres. The two datasets show similar trends

for K↓ and K↓,d, but they are offset by about 20 W m−2 for both K↓ and K↓,d. More

importantly, the BaRAD dataset captures the impacts of the two large volcanic eruptions,

El Chichón in 1982 and Mount Pinatubo in 1991, on K↓,d, particularly in the northern
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hemisphere (Fig. 5.12), which is also seen in the MERRA-2 dataset36. For the northern

hemisphere, the anomaly in K↓ from the mean of the previous and subsequent years (1981

and 1983) due to the El Chichón eruption was -1.95 W m−2 in MERRA-2 versus 2.81

W m−2 in the BaRAD dataset. For the Mount Pinatubo eruption, the K↓ anomaly was

-1.28 W m−2 in MERRA-2 versus -1.39 W m−2 in the BaRAD dataset. For northern

hemisphere K↓,d, there was an increase by 2.67 W m−2 in 1982 compared to the average

of the values in 1981 and 1983 in MERRA-2 and 2.13 W m−2 for BaRAD. Similarly, in

1991, the northern hemisphere K↓,d was higher by 1.75 W m−2 compared to 1990 and

1992 in MERRA-2 versus 1.14 W m−2 in BaRAD.

Figure 5.11: Long-term trends at site scale. Long-term trends in a diffuse radiation (K↓,d)
and b total shortwave radiation (K↓) for GEBA site with longest archival history, along
with corresponding gridded values from MERRA-2 and BaRAD. The monthly values are
plotted on the left y-axes and the annual averages are on the right y-axes.

Figures 5.11a and 5.11b are two examples of site-level comparison with observations

made at Sapporo, Japan (43.05◦ N, 141.33◦ E for K↓) and Würzburg, Germany (49.77◦ N,

9.97◦ E for K↓,d). These two sites are chosen because they have the longest data availabil-

ity. The BaRAD dataset replicates both the magnitude and long-term variability of the site

observations (r2 = 0.99 and MBE = -3.65 W m−2 for K↓,d; r2 = 0.97 and MBE = -8.64 W
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m−2 for K↓). On the other hand, MERRA-2 captures the variability (r2 = 0.98 for K↓,d;

0.97 for K↓), but has larger biases for both K↓,d (MBE = -22.95 W m−2) and K↓ (MBE =

16.85 W m−2).

Figure 5.12: Long-term trends at regional scale. Sub-figures a, b, c, and d show the long-
term regional trends in K↓,d and K↓ for northern and southern hemispheres, respectively.
The monthly values are plotted on the left y-axes and the annual averages are on the right
y-axes.

5.6 Usage Notes

The BaRAD dataset developed here performs well when compared to the GEBA dataset

and captures the seasonal, latitudinal, and long-term trends in K↓ and K↓,d. However,

the dataset can be affected by bias sampling in the GEBA dataset. The GEBA dataset is

overrepresented in the global north, especially in Europe and China (Wild et al., 2017).

A second source of bias is associated with the lack of training data over ocean surfaces.

Finally, polar regions are under-sampled by GEBA as noted above. We urge caution when

using this dataset over polar regions and ocean surfaces. For land grids in the southern

hemisphere, although there are many observations for K↓, there are fewer stations with

K↓,d measurements. As such, when possible, we suggest independent validation of the

BaRAD K↓,d data before its applications for southern hemisphere land grids.
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Chapter 6

Major Results and Future Work

6.1 Major Results

Chapter 2 of the dissertation found large asymmetries in the shortwave and longwave ra-

diative effects of aerosols, both regionally and diurnally. During daytime, both the short-

wave and longwave radiative effects are active and the shortwave effect is much stronger

than the longwave effect. During night, only the longwave radiative effect of aerosols is

active during a period of higher near-surface stability, leading to disproportionately larger

temperature response than during daytime. Overall, the climate sensitivity to the long-

wave radiative effect is higher than that for the shortwave radiative effect. This is true

when averaged for the whole day due to the day-night assymetry and also due to the inci-

dental co-location of regions of high climate sensitivity with regions with high dust aerosol

loading, which have a strong interaction with longwave radiation.

Chapter 3 showed that in addition to the generally known impact of aerosol diffuse

radiation fertilization on terrestrial evapotranspiration and land carbon uptake, aerosols

can also cool down the surface through non-radiative means. The evaporative cooling due

to aerosols is stronger than the local temperature response through the radiative pathways

for landscapes with medium to high vegetation density. When separating the impact of the
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global dimming and diffuse radiative fertilization effect of aerosols, the fertilization effect

showed a stronger impact on gross primary productivity and the global dimming was more

important for latent heat flux and surface temperature within the Community Earth System

Modeling framework.

Chapter 4 showed large discrepancies in the diffuse radiation fields among the current-

generation global gridded products. When moving from the MERRA-2 reanalysis to the

CERES dataset, the global mean diffuse fraction almost doubles. A strong correlation

is seen between biases in cloud cover and the difference in diffuse radiation among the

products. Although aerosols have a smaller impact on the overall biases, they do strongly

influence the long-term trends in diffuse radiation, particularly over China.

Chapter 5 tests different algorithms, both conceptual and data-driven ones, to reduce

the biases in the radiation fields of the MERRA-2 reanalysis. It was found that clearness

index based correction algorithms cannot account for the diffuse/direct partitioning, but

purely data-driven algorithms perform quite well. Using such an algorithm, a 40-year

monthly gridded dataset at the MERRA-2 native resolution that includes both total incom-

ing shortwave and diffuse radiation at the surface was developed.

6.2 Future Work

6.2.1 Confirming Influence of Surface Radiative Effect on Global Cli-

mate Sensitivity to Aerosols

The reason for the higher climate sensitivity to aerosols compared to greenhouse gases

has been an open question (Marvel et al., 2015; Rotstayn et al., 2015; Shindell, 2014).

In Chapter 2, I showed that the difference in climate sensitivity between aerosols and

well-mixed greenhouse gases can be explained by the additional local surface temperature

160



perturbation due to the high surface radiative effect of aerosols. However, this diagnosis

was done offline by comparing the overall temperature response to aerosols due to the

surface radiative forcing with values found in a previous study (Marvel et al., 2015). Al-

though the conceptual argument is valid, these values are not directly comparable since

they come from different models. There is a need to further examine this using pertur-

bation experiments by turning on and off anthropogenic aerosols and greenhouse gases.

Doing so using different Earth System Models can tell us about the generalizability of this

theory and improve our understanding of aerosol impact on the Earth system.

6.2.2 Comparing Impact of Diffuse Radiation on Terrestrial Processes

Across Different Leaf-to-Canopy Upscaling Schemes

I used the Community Land Model in Chapter 3 to estimate the impact of the diffuse radi-

ation fertilization effect on terrestrial processes. This model uses a two-big-leaf approach

to scaling energy and carbon fluxes from the leaf to the vegetation canopy. There are cur-

rently several other upscaling schemes used in CMIP6 model. It is necessary to compare

the sensitivity of the terrestrial water and carbon budgets to diffuse radiation fertilization

across these models. Quantifying the range of this sensitivity can provide better con-

strains on modeled terrestrial evapotranspiration and carbon sink in Earth System Models

(ESMs), which currently show large inter-model variability. A good start may be to com-

pare the corresponding sensitivities within CLM using the recently developed multi-layer

plant canopy model (Bonan et al., 2018) and the default two-big-leaf approach.
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6.2.3 Examining Long-Term Feedback Between Diffuse Radiation and

Surface Vegetation Cover

An important question that arises from the results in Chapter 3 is whether there is any pos-

sible feedback between vegetation state and incoming diffuse radiation. The few studies

which have attempted to answer this question have not done so using dynamic vegetation

schemes (Rap et al., 2018; Wang et al., 2019). With aerosol loading expected to change

drastically under most future scenarios (Westervelt et al., 2015), with reduced aerosols

under most IPCC scenarios due to clean-up efforts and potential increases in stratospheric

aerosols in proposed geoengineering schemes, we need to better constrain this feedback

for a more complete understanding of the role of aerosols on current and future surface cli-

mate. Evidently, this feedback will also depend on model parameterization of vegetation-

radiation interactions, and thus requires coordinated efforts across modeling groups. For

CLM, running the model in land-only mode, once using satellite phenology and once while

turning biogeochemistry on, would allow one to isolate how the canopy state responds to

this potential feedback.

6.2.4 Improving Observational Constraints on Diffuse Radiative Fer-

tilization Effect

Earth system models were used for the majority of this dissertation work since there is

a lack of simultaneous observations of turbulent fluxes, aerosols, and diffuse radiation

(Fig. 1.1). Although I comprehensively evaluate the bulk simulations against available

satellite and ground-based observations, the perturbation signals due to aerosols are much

harder to isolate in observations. A concentrated effort is needed to set up measurement

platforms in regions with both high aerosol loading and high vegetation density, such as in
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the Amazon, in the Congo Basin, and parts of south Asia. We would expect stronger signal

to noise ratios in these regions, which would give us improved observational constraints

on the diffuse radiation fertilization effect; also relevant for model evaluation.

6.2.5 Updating Internal Diffuse/Direct Partitioning Schemes for Land-

Only Model Simulations

In Chapter 3, I forced the Community Land Model with the diffuse/direct partitioning

from the Community Atmosphere Model. This is done since, by default, the land model

has an internal partitioning scheme based on a multregression fit that only depends on to-

tal irradiance. Evidently, this not an explicit function of aerosols or clouds. Different land

models have different partitioning schemes when diffuse radiation is not provided, from

assumptions of constant diffuse fraction to the use of simple linear estimates. Given the

importance of diffuse radiation on surface processes, it is necessary to update these internal

partitioning schemes when the models are run in land-only mode without explicit repre-

sentation of diffuse radiation, such as in the Land Use Model Intercomparison Project.

Doing so in a consistent manner can remove one source of uncertainty for multi-model

comparisons.

6.2.6 Better Constraining Diffuse Radiation Across Atmosphere Mod-

els

In Chapter 4, I found that clouds strongly influenced the difference in diffuse radiation

in global gridded products (Fig. 4.9). Since a lot of the radiation schemes used in these

products are also used in operational Earth System Models, one would expect similar

variability in diffuse radiation in them. Future atmosphere model development should

consider how well diffuse radiation is captured by these models, through both radiative
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transfer parameterization and cloud and aerosol inputs to the radiation codes.

6.2.7 Understanding Potential Biophysical Impacts of Aerosols Through

Indirect Effect

All of the results in Chapters 2 and 3 focus on the direct effect of aerosols. The radi-

ation diagnostics used assume the indirect effect for both aerosol and non-aerosol cases.

However, the influence of aerosols on clouds would contribute to both the surface radiative

effect and changes in diffuse fraction of sunlight. Future research should attempt to sepa-

rate the direct and indirect effects of aerosols on surface climate through both radiative and

non-radiative pathways. Since clouds and the land carbon sink are the two largest sources

of uncertainty in future projections of climate change, better examining the magnitude and

direction of these biophysical processes can help us predict more realistic scenarios and

enhance our overall understanding of the Earth system.
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depicted by world maps of the Köppen-Geiger climate classification. Meteorologis-

che Zeitschrift, 19(2), 135.

158. Ruehr, S., Lee, X., Smith, R., Li, X., Xu, Z., Liu, S., ... & Zhou, Y. (2020). A

mechanistic investigation of the oasis effect in the Zhangye cropland in semiarid

western China. Journal of Arid Environments, 176, 104120.

159. Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T., Caldwell, T.

E., & Loeb, N. G. (2015). CERES synoptic product: Methodology and validation

185



of surface radiant flux. Journal of Atmospheric and Oceanic Technology, 32(6),

1121-1143.

160. Ryu, Y., Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global

land products of shortwave radiation and diffuse and total photosynthetically active

radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-

825.

161. Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., ... & Goldberg,

M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American

Meteorological Society, 91(8), 1015-1058.

162. Samukova, E. A., Gorbarenko, E. V., & Erokhina, A. E. (2014). Long-term vari-

ations of solar radiation in Europe. Russian Meteorology and Hydrology, 39(8),

514-520.

163. Sanchez-Lorenzo, A., Wild, M., Brunetti, M., Guijarro, J. A., Hakuba, M. Z., Calbó,
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A.1 Abstract

We develop a new algorithm, the simplified urban-extent (SUE) algorithm, to estimate the

surface urban heat island (UHI) intensity at a global scale. We implement the SUE algo-

rithm on the Google Earth Engine platform using Moderate Resolution Imaging Spectro-

radiometer (MODIS) images to calculate the UHI intensity for over 9500 urban clusters

using over 15 years of data, making this one of the most comprehensive characterizations

of the surface UHI to date. The results from this algorithm are validated against previous

multi-city studies to demonstrate the suitability of this method. The dataset created is then

filtered for elevation differentials and percentage of urban area and used to estimate the

diurnal, monthly, and long-term variability in the surface UHI in different climate zones.

The global mean surface UHI intensity is 0.85 ◦C during daytime and 0.55 ◦C at night.

Cities in arid climate show distinct diurnal and seasonal patterns, with higher surface UHI

during nighttime (compared to daytime) and two peaks throughout the year. The diurnal

variability in surface UHI is highest for equatorial climate zone (0.88 ◦C) and lowest for

arid zone (0.53 ◦C). The seasonality is highest in the snow climate zone and lowest for

equatorial climate zone. While investigating the change in the surface UHI over a decade

and a half, we find a consistent increase in the daytime surface UHI in the urban clusters of

the warm temperate climate zone (0.04 ◦C per decade) and snow climate zone (0.05 ◦C per

decade). Only arid climate zones show a statistically significant increase in the nighttime

surface UHI intensity (0.03 ◦C per decade). Globally, the change is mainly seen during

the daytime (0.03 ◦C per decade). Finally, the importance of vegetation differential be-

tween urban and rural areas on the spatiotemporal variability is examined. Vegetation has

a strong control on the seasonal variability of the surface UHI and may also partly control

the long-term variability. The complete UHI data is available on this website, where the

user can query the UHI of an urban cluster through a simple interface.
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A.2 Introduction

The urban heat island (UHI) effect refers to the positive temperature difference between

an urban area and its hinterland, and it is one of the most well-known consequences of

urbanization on local climate (Souch and Grimmond, 2006). It has been an active area of

research in urban climatology since it was first observed a century back by Luke Howard

(Howard, 1833). Traditionally, it was defined as the air temperature difference between

the urban zone and its surroundings, known as the canopy UHI, and was studied using

in-situ weather stations or mobile measurements (Voogt, 2007). The advent of satellite

data has allowed us to define a new kind of urban heat island, known as the surface UHI,

which is the difference in land surface temperature (LST) between the urban area and its

surrounding non-urban area (Rao, 1972). Canopy and surface UHI intensities are similar

at the annual scale, but may have different diurnal and seasonal variabilities (Cui and De

Foy, 2012, Chakraborty et al., 2017).

Urbanization changes the surface energy budget by modifying albedo, reducing evap-

orative cooling via replacement of vegetated surfaces with built-up surfaces, increasing

heat storage due to the higher heat capacity of urban structures, and changing dissipation

of heat via modulation of thermal roughness and urban spatial configuration (Goward,

1981, Taha, 1997, Arnfield, 2003, Connors et al., 2013, Zhao et al., 2014, Debbage &

Shepherd, 2015). For heavily polluted cities in arid regions, dust particles can trap long-

wave radiation and increase the nighttime UHI intensity (Cao et al., 2016). Other major

determinants of the UHI intensity mentioned in the literature are synoptic conditions, city

size, precipitation, humidity, cloud cover, and coastal feedback (Santamouris, 2015).

Studies quantifying the magnitude of the UHI effect have been performed for hundreds

of cities around the world (Oke, 1979, Arnfield, 2003, Santamouris, 2015). Traditionally,

such studies are done on a city-by-city basis, which can lead to inconsistencies due to
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differences in data collection processes, sensor types, and other methodological consid-

erations. A systematic critique of the UHI literature (Stewart, 2011) found that roughly

half of the UHI studies lacked robustness. Some important issues were: not controlling

for weather factors, lack of information on site meta data and instrumentation, lack of

accounting for temporal variability during mobile surveys, inconsistency in defining both

urban and rural measurement locations, and disregarding the effect of scale.

The use of satellite data has reduced the inconsistency in measurement techniques

by allowing a standardized data collection approach that can be implemented for multi-

ple cities. Previously, Tran et al. (2006) and Imhoff et al. (2010) used satellite data to

investigate the surface UHI of 18 Asian megacities and 38 highly populated US cities,

respectively. Systematic studies have also been performed on the UHI intensity of cities in

Europe (Schwarz et al., 2011, Zhou et al., 2013). A recent study investigated the diurnality

and seasonality of the surface UHI in the 84 largest cities in India (Shastri et al., 2017).

The principal works done on multiple cities at the global scale are by Peng et al. (2011),

who analyzed the UHI of 419 largest cities using 5 years of MODIS AQUA LST data and

Clinton & Gong (2013), who investigated the global pattern of the UHI intensity for 2010.

For both canopy and surface UHI studies, one persistent issue is the definition of the

rural station (for canopy UHI) or the boundary between the urban and rural area (for sur-

face UHI) (Martin-Vide et al., 2015). Nearby rural areas are affected by advection from

the urban core. However, if the rural station is too far away, local weather changes might

be more important than the impact of land use changes. A recent study in China found that

the footprint of the UHI can be twice or thrice the area of the city (Zhou et al., 2015). This

is much higher than the area of the fixed buffer zones normally used in global UHI studies

(Clinton & Gong, 2013). The study also demonstrated that for closely located cities, the

effect of advection from other cities could also have an impact on the UHI intensity.

Smaller urban areas have generally been overlooked in the existing UHI literature,
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which disproportionately focuses on large mega-cities. Moreover, the temporal and sea-

sonal variability of the UHI intensity has not been investigated at a global scale. So in

this study, we map the daytime and nighttime surface UHI for all urban areas currently

detectable via MODIS-based spectral classification of land use using over 15 years of ob-

served data. Buffer-based analyses of the UHI intensity are common in the literature and

it is hard to choose a fixed buffer width that is reasonable for all the cities across the globe.

So we develop a new algorithm, the simplified urban-extent algorithm (SUE), that can be

used to automatically calculate the UHI intensity at a global scale. The algorithm is imple-

mented on Google Earth Engine, a cloud-based platform for planetary-scale data archiving

and geospatial analysis (Gorelick et al., 2017). We estimate the surface UHI intensity for

almost 9500 distinct urban clusters and estimate the diurnal, seasonal, and annual pattern

of the UHI intensity for each climate zone. Many of the factors that influence the UHI

intensity, like urban albedo, longwave trapping by the urban canyon, surface roughness,

etc. do not show significant seasonal or temporal variations, given the relatively constant

nature of urban areas. The main varying characteristic is vegetation cover, which changes

throughout the year, as well as between years. Given the focus on the seasonal and tem-

poral variability of the UHI in the present study, we examine how vegetation controls this

dynamic globally, and for different climate zones.

The major research questions investigated in the present study are:

• How well does the newly designed SUE algorithm replicate the known characteris-

tics of the surface UHI effect?

• How does the mean, diurnal, and seasonal patterns of the UHI compare for urban

clusters in different climate zones?

• How has the UHI intensity changed in the last decade and a half, both globally and

for each climate zone?

201



• How strongly does vegetation control the seasonal and temporal variability of the

surface UHI?

Section A.3 describes the SUE algorithm developed for this study. Section A.4 shows

the comparison of the results with those obtained from previous multi-city studies. Section

A.5 shows the general results as well as the diurnal, seasonal, and annual variability of the

surface UHI for urban clusters in different climate zones. Section A.6 examines how

vegetation controls the spatiotemporal variability of the UHI and discusses the advantages

and disadvantages of the SUE algorithm.

A.3 Methodology

A.3.1 The Simplified Urban-Extent (SUE) Algorithm

In this study, we define the surface UHI as the difference in LST of the urban pixels and

the non-urban pixels within each urban extent, which we call the simplified urban-extent

(SUE) algorithm. First, the MODIS-derived LST data from TERRA (MOD11A2) and

AQUA (MYD11A2) satellites, available at 1 km x 1 km resolution, are pre-processed,

with only the clear-sky pixels with average LST error of less than or equal to 3 K being

selected for further analysis. The quality-controlled datasets are then used to estimate the

LST at 0130, 1030, 1330, and 2230 local time (LT). Data from 2000 to 2017 (18 years) are

used from the TERRA platform, while data from 2002 to 2017 (16 years) are used from

AQUA.

The urban extent data are from Natural Earth (2018). It is a combination of the global

urban land database by Schneider et al., 2009, Schneider et al., 2010 and the Oak Ridge

National Laboratory’s LandScan population database (Dobson et al., 2000). The urban

data are based on MODIS measurements for February 2001 to February 2002 and is de-
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fined using the C4.5 decision tree algorithm (Quinlan, 1993). This dataset has already

been validated, with an overall accuracy of 93%, using a Landsat-based map of 140 urban

areas in different ecoregions, and for different levels of population and economic devel-

opment (Schneider et al., 2010). These global urban data are intersected with Thiessen

polygons derived from the LandScan population points to create the urban land database;

the results are in vector format on the Natural Earth website (2018). The urban units are

closed polygons around contiguous urban agglomerations. Fig. A.1 shows an example of

one such urban unit consisting of multiple urban areas. The advantage of using this dataset

is that it is based on a consistent algorithm implemented on the MODIS land use satellite

product and bounds the global hot spots of human habitation.

Figure A.1 shows the steps used to estimate the surface UHI of each urban cluster.

Firstly, the global LST and MODIS LU/LC data (at 500 m x 500 m resolution) for 2013

(MCD12Q1) are clipped to the urban extent dataset. Then, two subsets are created, one

for urban land use (in red in Fig. A.1) and another for all land use other than urban and

water based on the land use data. The water pixels are removed since the high specific

heat capacity of water would lead to an overestimation of the UHI intensity during the

daytime and an underestimation during nighttime. After subsetting, the spatial mean of

the LST for both subsets are calculated for each urban cluster and their difference is the

surface UHI for that cluster. Before taking the spatial means, the subsetted LST pixels are

automatically resampled to 500 m x 500 m grids to match the resolution of the LU/LC data.

When calculating the surface UHI for separate years, the same extent shape is applied to

all years, though the subsetting is done using the MODIS LU/LC data for that particular

year. Since the MODIS LU/LC data are only available till 2013, the 2013 data are also

used for the years 2014 to 2017. Unless otherwise stated, the daytime UHI is derived from

the mean of LST values at 1030 and 1330 LT, while the nighttime UHI is based on the

mean of the LST at 0130 and 2230 LT. The same method is used to find the difference in
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Figure A.1: Sequence of steps used to estimate the surface UHI for each urban cluster.
First, a subset of the MODIS LU/LC data are created based on the the urban extent dataset.
Two subsets of this data are created; one for urban land use, and another for non-urban,
non-water land use. The mean of the LST over these LU/LC pixels gives the urban and
rural temperatures, respectively. Finally, the difference between these two is the calculated
surface UHI. The figure also shows one example of urban units used in the present study,
along with the MODIS LU/LC dataset used to create the subsets.

Enhanced Vegetation Index (EVI) (∆EVI), a proxy for green vegetation density, between

the urban and rural pixels using the AQUA 16-day EVI dataset available at 250 m x 250

m resolution (MYD13Q1) for the same time period.

Evidently, the algorithm, in its current form, does not work for the clusters that are en-

tirely urban or rural. This is especially true for small clusters (with area< 3 km2) with very

few pixels. We remove the clusters with no rural pixels. After removing these from the

original dataset of 12022 separate clusters, we are left with 9483 urban clusters. Since the

difference in elevation between the urban and rural pixels can influence the UHI intensity,

the dataset was further filtered to only include those clusters with a mean elevation differ-

ence of less than 50 m. For this, we use the Global Multi-resolution Terrain Elevation Data
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2010 (GMTED2010), which combines terrain elevation data from multiple sources and is

available at 7 arc seconds (roughly 30 m at the equator) (Danielson and Gesch, 2011).

Finally, to further constrain the variability in the ratio of urban to rural pixels for each

cluster, only the clusters with at least 10% urban area are considered. The surface UHI

is then calculated using all the available data after quality control (from 2000 to 2017 for

TERRA and from 2002 to 2017 for AQUA). For the summer surface UHI, data for June,

July, and August are considered for the Northern Hemisphere and December, January and

February for the Southern Hemisphere. For winter, June, July, and August are consid-

ered for the Southern Hemisphere and December, January and February for the Northern

Hemisphere. The final dataset consists of 7374 urban clusters comprising 760600 km2

with 38.78% of the total area (294960 km2) being urban with a mean elevation difference

of 4.46 m between urban and rural pixels. This is similar to the area analyzed by Clinton

& Gong (2013), though we use a new algorithm and 16 years of data versus the one year

(2010) used in that study. The multiple years of data allow us to characterize the long-term

variability of the surface UHI and get better uncertainty estimates of the seasonal trend and

annual values.

A.3.2 Latitudinal pattern of the surface UHI

The zonal characteristics of the UHI at a global scale are first investigated. To do this,

the Earth is divided into 5◦ latitudinal increments and the mean and standard error of the

UHI intensity are computed for each increment. Some urban clusters lie on the boundary

between two latitudinal increments and this would lead to double counting. To avoid

this, the centroid of each urban cluster is determined before grouping into the latitudinal

increments. Peng et al. (2011) characterized the latitudinal variability of the surface UHI

difference between summer and winter using MODIS AQUA data for the 419 largest cities.

For the purpose of algorithm validation, this is also done with the 419 largest urban clusters
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in the present study (subsection A.4).

A.3.3 Climatic Variability of the Surface UHI

While zonal characteristics can give an overview of the global surface UHI characteris-

tics, it cannot account for any forcing other than the latitudinally varying incoming solar

radiation. There is some evidence that the surface UHI intensity is influenced by the back-

ground climate of the city (Zhao et al., 2014). Zonal characterization cannot account for

differences in background climate since there may be multiple climate zones in one latitu-

dinal increment. Thus, in the present study, the surface UHI characteristics are separately

investigated for each climate zone.

The updated Koppen–Geiger classification data for 1901–2100 are used, based on

Rubel and Kottek (2010). The Koppen-Geiger classification divides the world into 5 major

climate zones: equatorial, arid, warm temperate, snow, and polar (Fig. A.2a). Similar to

the latitudinal classification, the centroids of the urban clusters are used for grouping to

minimize double counting using an XY tolerance of 500 m on ArcMap. There are 762

urban clusters in the equatorial climate zone, 1136 in the arid climate zone, 3968 in the

warm temperate climate zone, 1499 in the snow climate zone. The latitudinal variation

of the urban clusters for each climate zone is in Fig. A.2b, the distribution of the area of

urban clusters is in Fig. A.3, and the distribution of the percentage of urban pixels in each

cluster is in Fig. A.4. All the urban clusters in the polar climate zone are filtered out since

the elevation difference between the rural and urban pixels is >50 m in all these clusters.

The total number of urban clusters in all climate zone, when added, is 7374, which is 9

less than the total number of clusters in the global dataset. This is because the climate

zone vector used in the grouping process do not enclose the position of some of the urban

centroids. In addition, several urban clusters are double counted as they are in two or more

climate zones at once; a result of the XY tolerance used while grouping. Since the sample
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Figure A.2: The major 5 climate zones as defined by the Koppen-Geiger climate classi-
fication and the latitudinal variation of the urban clusters for the world and each climate
zone
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Table A.1: Summary of surface UHI characteristics (mean ± standard deviation) for
the largest 419 urban clusters compared to the largest 419 cities considered by Peng et
al.(2011).

Source TERRA (present study) AQUA (present study) Peng et al.
Annual day (◦C) 1.11 ± 1.05 1.50 ± 1.26 1.50 ± 1.20

Annual night (◦C) 0.89 ± 0.44 0.80 ± 0.44 1.10 ± 0.50
Summer day (◦C) 1.62 ± 1.47 2.03 ± 1.64 1.90 ± 1.50

Summer night (◦C) 1.05 ± 0.45 0.90 ± 0.41 1.00 ± 0.05
Winter day (◦C) 0.64 ± 0.77 0.96 ± 1.00 1.10 ± 1.20

Winter night (◦C) 0.86 ± 0.61 0.78 ± 0.61 1.00 ± 0.70

size is large, these small discrepancies are trivial.

A.4 Validation of Results

Peng et al. (2011) used the city-clustering algorithm by Rozenfeld et al. (2008) to define

the urban areas at a fine scale. Then, they estimated the surface UHI as the difference in

LST between the city core and its rural hinterland using MODIS AQUA data. In contrast,

the SUE algorithm developed in the present study uses the difference in the mean LST

of the urban pixels and the mean LST of the non-urban pixels within the same urban

extent to define the surface UHI. To validate the accuracy of SUE at estimating the surface

UHI versus the method used by Peng et al. (2011), the surface UHI intensities from

AQUA for the 419 largest urban clusters in the dataset (same as the number of cities

studied by Peng et al. (2011) were calculated. The surface UHI intensities for TERRA

were also calculated for comparison. The daytime and nighttime surface UHI intensities

(mean ± standard deviation) for annual, summer and winter for both methods are shown

in Table A.1. The results from the SUE algorithm are in line with the results from the city-

clustering algorithm, especially for daytime. During nighttime, the SUE algorithm slightly

underestimates the surface UHI (around 27% underestimation for annual nighttime surface

UHI), while wintertime UHI intensity is biased low for both daytime and nighttime.
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(a) World

(b) Equatorial climate zone (c) Arid climate zone

(d) Warm temperate climate zone (e) Snow climate zone

Figure A.3: Distribution of the area of the urban clusters for the world and each climate
zone.
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(a) World

(b) Equatorial climate zone (c) Arid climate zone

(d) Warm temperate climate zone (e) Snow climate zone

Figure A.4: Distribution of the percentage of urban area in each cluster for the world and
each climate zone.
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The study by Peng et al. (2011) did not show any major seasonality for the nighttime

surface UHI, with annual, winter time and summertime mean values being very close.

On the contrary, the present study shows that the summertime UHI is the highest and the

winter time UHI is the lowest, and the annual mean UHI is between those two values.

This is consistent with the observations for the 419 largest cities derived from the TERRA

dataset. The seasonality of the UHI is discussed in more detail in section A.5.5.

The slight deviation from the previous values may not only be due to the different

methodologies. The present study uses 16 years (from 2002 to 2017) of data for AQUA

compared to 6 years of data (from 2003 to 2008) used in Peng et al. (2011). Moreover,

the largest 419 urban clusters are not same as the largest 419 cities. Many of the larger

urban clusters are created from contiguous cities. Thus, the 419 largest urban clusters

incorporate more area than the 419 largest cities used in Peng et al. (2011). Moreover, in

the present study, MODIS pixels with an error greater than 3 K are removed before the

final analyses.

The latitudinal variation of the AQUA-derived surface UHI differences between sum-

mer and winter for the 419 largest urban clusters is compared with the pattern seen from

the methodology used by Peng et al. (2011) in Fig. A.5. The study by Peng et al. (2011)

used 15 latitudinal increments to find the variation, whereas we use 20 latitudinal incre-

ments of 5◦ width. Overall, both methods show very similar patterns. For daytime, the

values from the present study have a less pronounced latitudinal variability. Otherwise,

the peaks and troughs are roughly replicated by our methodology. The only exception is

the opposite trend seen for 20◦ South latitude. For nighttime, the patterns from the two

algorithms are even more similar in magnitude and latitudinal variability.

Clinton & Gong (2013) also calculated the surface UHI for all global urban areas for

2010 using 5 - and 10-km buffers. We compared the 2010 data from the present study with

the results of that study (Table A.2). The UHI values found here are very similar to the
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Figure A.5: Comparison of latitudinal variation in difference between summer and winter
surface UHI intensity from the city-clustering algorithm-based definition and the SUE
algorithm for a daytime and b nighttime. The black vertical line represents the zero value.

Table A.2: Summary of surface UHI characteristics (mean ± standard deviation) for the
all urban areas compared to the results from Clinton & Gong (2013)

.

Local time
Present study

(SUE)
Clinton & Gong

(5 km buffer)
Clinton & Gong
(10 km buffer)

0130 LT 0.51 ± 0.47 0.60 ± 0.90 0.70 ± 1.00
1030 LT 0.73 ± 0.86 0.70 ± 1.40 1.00 ± 1.60
1330 LT 1.00 ± 1.08 0.90 ± 1.60 1.10 ± 1.80
2230 LT 0.60 ± 0.47 0.60 ± 0.90 0.80 ± 1.00

values calculated using 5-km buffers and lower than those calculated using 10-km buffers.

The standard deviations of the UHI values are lower in the present study.

The results of present study are in agreement with the results of the buffer-based anal-

ysis for large cities and all cities. Thus, we are confident that the SUE algorithm is a viable

alternative to buffer-based characterizations of surface UHI intensity.

212



A.5 Results

A.5.1 Global Patterns

Figure A.6 shows the global map of the mean surface UHI for daytime and nighttime de-

rived from MODIS satellite measurements. The global mean surface UHI intensity is 0.85

◦C for daytime and 0.55 ◦C for nighttime. The majority (87%) of the urban clusters show

a positive daytime surface UHI, with 44% showing values greater than 1.00 ◦C. During

nighttime, 93% of the urban clusters show positive UHI intensities, but only 13% show

value greater than 1.00 ◦C. The urban clusters with negative surface UHI are concentrated

in the dry and desert areas, namely the Arabian Desert in the Middle East, the Chihuahuan

Desert in southern US and Mexico, the Thar Desert along the border of India and Pakistan,

the Kalahari Desert in southern Africa, and the Patagonian Desert in the southern part of

South America. The nighttime surface UHI intensities are generally lower than the day-

time values. Daytime UHI is influenced by more factors like the difference in evaporative

cooling and surface roughness between urban and rural areas, anthropogenic heat flux,

and thermal inertia of built-up structures (Zhao et al., 2014). In contrast, nighttime UHI is

primarily influenced by heat storage from the daytime, and anthropogenic heat flux. This

explains why the temperature differential is higher during the day than at night.

When the UHI derived from AQUA and TERRA are analyzed separately, the data

from AQUA shows higher values during daytime and lower values during nighttime. Ta-

ble A.3 summarizes the surface UHI intensity from the global dataset from both TERRA

and AQUA platforms. The annual daytime surface UHI intensity is greater than the night-

time intensity for both TERRA and AQUA. The daytime and nighttime summer surface

UHI intensities are larger than their corresponding winter time components. The daytime

intensity for summer are over twice the UHI intensity for winter for both TERRA and
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Figure A.6: Global map of mean surface UHI for 7374 urban clusters estimated using the
SUE algorithm. The daytime value is the mean of the UHI intensity at 1030 LT derived
from TERRA (2001-2017) and the UHI intensity at 1330 LT derived from AQUA (2003-
2017). The nighttime value is the mean of the UHI intensity at 2230 LT derived from
TERRA and the UHI intensity at 0130 LT derived from AQUA.

214



AQUA. For nighttime, the seasonal difference is less pronounced. The daytime surface

UHI is larger than the nighttime surface UHI for all cases. Paired t-tests were performed

between all daytime and nighttime datasets and they were found to be statistically signifi-

cant with p<0.01 for all cases.

Table A.3: Summary of global surface UHI characteristics, where the sample size is 7374.
Differences in daytime and nighttime UHI intensities are statistically significant (p<0.01)
for all cases.

Period Local time Mean Standard deviation 1st quartile 2nd quartile 3rd quartile

Annual 0130 LT 0.51 0.44 0.25 0.50 0.75

1030 LT 0.71 0.82 0.30 0.74 1.17

1330 LT 1.00 1.04 0.44 1.02 1.59

2230 LT 0.59 0.44 0.32 0.56 0.84

Summer 0130 LT 0.57 0.44 0.30 0.55 0.82

1030 LT 1.12 1.19 0.45 1.18 1.87

1330 LT 1.44 1.42 0.61 1.51 2.36

2230 LT 0.69 0.46 0.40 0.67 0.96

Winter 0130 LT 0.50 0.54 0.19 0.44 0.75

1030 LT 0.35 0.59 0.09 0.35 0.63

1330 LT 0.53 0.79 0.13 0.52 0.92

2230 LT 0.57 0.54 0.24 0.50 0.84

A.5.2 Latitudinal Patterns

Figure A.7 shows the latitudinal variation in the surface UHI for daytime and nighttime.

The solid lines show the mean surface UHI intensities for each 5◦ latitudinal increments,

while the shaded portions represent the standard error from the mean. The daytime and
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Figure A.7: Latitudinal variation in surface UHI intensity. The solid lines are for mean
values, while the shaded portions represent the standard error. The daytime and nighttime
intensities are consolidated values from TERRA and AQUA platforms.

nighttime surface UHI intensities show distinct patterns. For daytime, there are pro-

nounced positive surface UHI intensities around the equator, at 20◦ South, and between

40◦ and 60◦ North. Compared to the daytime UHI, the nighttime UHI shows lesser lat-

itudinal variability. There is a pronounced nighttime UHI at 30◦ North and around 10◦

South. At around 25◦ North and 30◦ South, the daytime and nighttime UHI intensities flip,

i.e. the nighttime surface UHI is greater than the daytime intensity. These latitudes are

predominantly arid and cities in arid climate show higher nighttime surface UHI intensity

(refer section A.5.3). This reversal of the UHI diurnality in desert cities has been observed

in previous studies (Imhoff et al., 2010, Zhang et al., 2010, Lazzarini et al., 2013).
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A.5.3 Variations Across Climate Zones

Figure A.8 shows the mean and standard error of the daytime and nighttime surface UHI

categorized into the Koppen-Geiger climate zones. For daytime, the highest surface UHI

is for the equatorial urban clusters, followed by snow, warm temperate, and arid. Arid

urban clusters, in particular, have nearly zero daytime UHI. This pattern is consistent at

both 1030 LT and at 1330 LT. For nighttime, arid urban clusters have the highest UHI

intensity. The urban clusters in equatorial, warm temperate and snow climate zones all

show very similar surface UHI intensities. The daytime surface UHI is greater than the

nighttime surface UHI for all climate zones other than the arid. Paired t-tests confirm that

the difference between the daytime and nighttime UHI intensity is statistically significant

(p<0.01) for all climate zones.
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Figure A.8: Global daytime and nighttime surface UHI intensities (mean ± standard er-
ror) for each climate zone.

A.5.4 Diurnality

The daytime and nighttime measurements from TERRA and AQUA were combined to

calculate the diurnality of the surface UHI intensity for the world and for each climate
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Figure A.9: Diurnality of the surface UHI for the world and each climate zone. The solid
lines represent the mean value, while the shaded areas represent the standard errors.

zone. In Fig. A.9, the solid lines represent the mean of the diurnal variation, while the

shaded regions show the one standard error from the mean. As discussed previously,

globally, the surface UHI intensity is higher during the day than at night, which has been

seen in previous studies (Peng et al., 2011, Clinton & Gong, 2013). The present study

shows that this diurnality is consistent across all the climate zones except the arid zone.

Among equatorial, warm temperate, and snow urban clusters, the UHI intensity is highest

at 1330 LT and lowest at 0130 LT. For the arid zone, the highest surface UHI intensity is

at 2230 LT and the lowest is at at 1030 LT.

The diurnal range of the surface UHI – the difference between the maximum and min-

imum surface UHI intensities – is highest for the equatorial urban clusters (0.88 ◦C), fol-
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Figure A.10: Seasonal variability in global daytime and nighttime surface UHI intensities
for each climate zone. The solid lines represent the mean value, while the shaded areas
represent the standard errors.

lowed by 0.79 ◦C for snow, 0.56 ◦C for warm temperate, and 0.53 ◦C for arid. Overall, the

diurnal range of the surface UHI is 0.52 ◦C. The standard error of UHI intensity is very

low because of the large sample size.

A.5.5 Seasonal Variability

The monthly means and standard errors of the surface UHI intensity for each of the 12

months of the year are presented in Fig. A.10. Globally, the daytime surface UHI shows

higher values during the boreal summer, with the highest intensities in July (1.29 ± 0.01

◦C) and the lowest values in December 0.43 ± 0.01 ◦C.

When the data are divided into climate zones, all of them do not show the same pattern.

The warm temperate and snow urban clusters show comparable patterns with low values

during the boreal winter and high values during boreal summer. For daytime, the maxi-

mum surface UHI intensities for the warm temperate and snow urban clusters are during

the boreal summer (1.43± 0.02 ◦C in June for warm temperate; 1.78± 0.03 ◦C in July for

snow) and the lowest values are in boreal autumn (0.46 ± 0.01 ◦C in December for warm

temperate; 0.35 ± 0.01 in November ◦C for snow). The daytime surface UHI intensity in
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the equatorial and arid zones show distinct patterns. For the arid urban clusters, there is

hardly any seasonality compared to the other climate zones. Moreover, the daytime sur-

face UHI intensities are close to zero for most of the year. The daytime surface UHI in

the equatorial climate zone shows the opposite pattern to the warm temperate and snow

climate zones, with the highest values during boreal autumn and the lowest values during

boreal spring.

The seasonality of the global nighttime surface UHI is similar to the daytime pattern

with June highs and November lows (Fig. A.10 b). The nighttime surface UHI of the warm

temperate climate zone shows high values during boreal summer (July) and low values in

boreal autumn (December). Like the daytime case, the seasonality of the monthly surface

UHI is atypical for equatorial and arid zone. The arid zone again shows two peaks during

the year, one in March and another in October. The minimum surface UHI in the arid

urban clusters is in July. The equatorial zone shows the highest surface UHI intensity in

boreal winter (January) and the minimum in boreal summer (July). For nighttime, urban

clusters in the snow climate zone also show two peaks during the year, one in February

and another in July. The lowest nighttime intensity for this climate zone is in November.

The maximum daytime surface UHI intensity in all climate zones other than equatorial

are in and around boreal summer. Eighty nine percent of the urban clusters considered in

the present study are in the Northern Hemisphere. Moreover, most of the urban clusters in

the Southern Hemisphere are in the Tropics, which show very little seasonality. Since the

energy imbalance due to urban land use (due to changes in albedo, thermal mass, evap-

otranspiration, etc.) is a function of the magnitude of incoming solar radiation, it makes

sense that the surface UHI is highest when the Northern Hemisphere receives the high-

est net radiation. When the dataset is separated into hemispheres, the seasonal variation

is identical in the Northern Hemisphere and reverses for the Southern Hemisphere (Fig.

A.11). For the Southern Hemisphere, the peak daytime surface UHI intensity is shifted
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(c) Northern Hemisphere (d) Southern Hemisphere

Figure A.11: Seasonal variation in daytime and nighttime surface UHI magnitudes for
each climate zone from consolidated TERRA and AQUA measurements for the Northern
and Southern Hemispheres. The solid lines represent the mean value, while the shaded
areas represent the standard errors.

towards the austral summer for all the climate zones. Nighttime surface UHI shows very

little seasonal variation in the Southern Hemisphere.

The global inter-seasonal range of the daytime UHI – the difference between the max-

imum and minimum mean monthly daytime surface UHI intensities during the 12-month

cycle – is 0.85 ◦C. The highest seasonality in the daytime surface UHI is 1.44 ◦C for ur-

ban clusters in the snow climate zone, followed by warm temperate zone (0.95◦C). Inter-

seasonal range of daytime surface UHI 0.38 ◦C for both equatorial and arid climate zone.
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The inter-seasonal range of the global nighttime UHI is very low (0.14 ◦C). A recent multi-

city study showed that many urban centers in India show a negative surface UHI during

daytime during the hot period (Shastri et al., 2017). This dampens the seasonality of the

daytime UHI in the equatorial climate zone. The snow urban clusters show the highest

inter-seasonal range of nighttime UHI intensity (0.37 ◦C), followed by warm temperate

(0.23 ◦C), arid (0.19 ◦C), and equatorial (0.18 ◦C).

Very few studies have investigated the seasonality of the UHI on a month-by-month

basis for multiple cities (Debbage & Shepherd, 2015). Clinton & Gong (2013) looked

at the time of maximum and minimum surface UHI intensity for cities around the globe,

though they did it only for 2010. This is the first study to characterize the seasonality of

the surface UHI at a global scale using all available MODIS observations.

A.5.6 Long-Term Trend

Figure A.12 shows the temporal variability in the annual UHI from 2003 to 2017 based on

aggregated data from TERRA and AQUA. The change per decade for each case, along with

its 95% confidence interval, is mentioned in the figure. Globally, the daytime surface UHI

shows a positive temporal trend, with an increase of around 0.03 ± 0.02 ◦C per decade. In

comparison, the nighttime surface UHI intensities have remained practically unchanged

(-0.00 ± 0.01 ◦C per decade). The increase in the daytime UHI intensity is highest for the

snow urban clusters (0.05± 0.03 ◦C per decade) and lowest in the arid zone (-0.03± 0.01

◦C per decade).

For nighttime, the surface UHI intensity does not show any significant change (with

95% confidence), except for urban clusters in the arid zone, which show an increasing

trend (0.03 ± 0.01 ◦C per decade). Daytime surface UHI intensity has decreased signif-

icantly in arid urban clusters over the last decade and a half. This makes sense because

urban clusters in arid climate are cooler than their surroundings (Zhao et al., 2014) and
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Figure A.12: Temporal variability in annual daytime and nighttime surface UHI intensi-
ties from 2003 to 2017. The solid lines represent the mean values, while the shaded areas
represent the standard errors. The dashed line represents the trend for best linear fit and
the change in the surface UHI intensity per decade (mean ± 95% confidence interval) is
mentioned on each plot.
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expansion of these areas over time would intensify these urban cool islands. The daytime

UHI intensity change over the warm temperate zone, which includes the majority of urban

clusters in Europe and North America, is also positive. The present study is the first inves-

tigation of how the surface UHI has changed over the last decade and a half on a global

scale and for each climate zone using observed data.

In comparison to the changes found here, the global land temperature anomalies have

increased at the rate of 0.30 ◦C per decade from 2003 to 2017 (NOAA, 2018). It should

be noted that since the surface UHI is calculated in reference to non-urban land use, the

changes in UHI intensity found in the present study is in addition to the increase in surface

temperature due to global climate change. In comparison, deforestation shows a much

stronger effect, though the strength and sign of change depends on the latitude (Lee et al.,

2011). A recent study using MODIS LST products from 2003 to 2013 found an increase

in average surface temperature at the rate of 0.28 ◦C per decade in equatorial regions, a

maximum cooling of 0.55 ◦C per decade in boreal regions, and a warming of up to 0.32

◦C per decade in temperate regions (Li et al., 2016).

Previously, two such studies (Fischer et al., 2012, Oleson, 2012) have analyzed the

difference in urban and rural response to climate change using global climate models, i.e.

the change in the UHI intensity. Depending on the climate change scenario used (best to

worst), the UHI either stayed the same or slightly reduced compared to the present day

scenario. However, these studies did not take urban expansion into consideration, which

could be influencing the changes observed in the present study.
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A.6 Discussion

A.6.1 Vegetation Control on the Surface UHI Intensity

Several previous studies have shown that difference in vegetation between the urban and

rural areas strongly modulates the surface UHI intensity via differential evaporative cool-

ing of urban versus rural surfaces. This has been seen when comparing surface UHI of

multiple cities (Peng et al., 2011, Clinton & Gong, 2013), as well as when comparing

the seasonal surface UHI trend of individual cities (Qiao et al., 2013, Chakraborty et al.,

2017). Similarly, in the present study, when the dataset is divided into increasing ∆EVI

quartiles, the daytime surface UHI intensity decreases (Fig. A.13). This is particularly

true for global, equatorial, arid, and warm temperate cases. For the snow urban clus-

ters, daytime surface UHI increases slightly for the highest ∆EVI bin. This is because

these cities are primarily in the northern latitudes, where vegetation control is less domi-

nant. Similarly, there is no consistent association between nighttime UHI and ∆EVI since,

mechanistically, impact of vegetation on surface temperature is dominant during daytime.
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Figure A.13: Daytime and nighttime surface UHI intensity (mean ± standard deviation)
for increasing urban-rural EVI difference bins.

We examine how the seasonality of the ∆EVI modulates the seasonal variability of the

surface UHI. The monthly ∆EVI accounts for 95% of the variance in the monthly daytime

UHI at a global scale (Fig. A.14). Similar strong correlations are found for urban clusters

in warm temperate (r2=0.94) and snow (r2=0.84) climate zones. The correlations are not
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statistically significant (p >0.01) for urban clusters in equatorial and arid zones. This is

partly because the seasonal variability is lowest in these climate zones as they are nearer

to the equator. Moreover, vegetation is not a strong determinant of the daytime UHI in the

arid zone and the equatorial region is strongly influenced by other factors, like cloudiness,

monsoonal rainfall, etc., which can impact the UHI intensity.
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Figure A.14: Association between monthly daytime surface UHI intensity and monthly
∆EVI for all urban clusters, and urban clusters in each climate zone.

The rural EVI shows a stronger seasonal cycle than the urban EVI for all climate zones

other than equatorial, which modulates the differential evaporative cooling between urban

and rural areas, and thus, the daytime UHI intensity (Fig. A.15). The nighttime surface

UHI shows a much weaker association with the ∆EVI, suggesting that it is not strongly

controlled by the vegetation differential between urban and rural surfaces, as also found

in a previous study (Peng et al., 2011). For nighttime, the association is only statistically
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significant for the world and warm temperate climate zones (Fig. A.16).
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Figure A.15: Seasonal variation in urban and rural EVI for the world and each climate
zone from 16-day AQUA measurements.
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Figure A.16: Association between monthly nighttime surface UHI intensity and monthly
∆EVI for all urban clusters, and urban clusters in each climate zone.

Similar correlations were attempted between the yearly daytime and nighttime surface

UHI intensities and the yearly ∆EVI values (Fig. A.17 and A.18). The relationships are

much weaker, except for the arid zone. Temporal analyses of the urban and rural EVI

over 16 years show that the rate of change of urban EVI per decade is lower than the

corresponding change in the rural EVI (Fig. A.19). Globally, the urban EVI has remained

the same while the rural EVI has increased slightly. However, these results are near the

detection limit of MODIS.
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Figure A.17: Association between yearly (2003-2017) surface UHI intensity and monthly
∆EVI for all urban clusters, and urban clusters in each climate zone.
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Figure A.18: Association between yearly (2003-2017) surface UHI intensity and monthly
∆EVI for all urban clusters, and urban clusters in each climate zone.
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Figure A.19: Temporal variability in annual urban and rural EVI from 2003 to 2017. The
solid lines represent the mean values, while the shaded areas represent the standard errors.
The dashed line represents the trend for best linear fit and the change in EVI per decade
(mean ± 95% confidence interval) is mentioned on each plot.
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A.6.2 Advantages of the SUE Algorithm

One major advantage of the SUE algorithm is that it can be automated to estimate the

surface UHI intensity at a global scale. We do not need to explicitly define a buffer around

an urban area to implement this algorithm. Instead, we use the urban boundaries as the

units of calculation, with the spectral classification of remotely sensed data being used to

separate the urban and rural pixels. The choice of a buffer around an urban area can be

arbitrary. Moreover, studies on individual cities sometimes use administrative boundaries

to define the urban area, which are usually not related to the physical characteristics of

urban land use. In comparison, the rural area in the Natural Earth dataset used in this

iteration of the SUE algorithm is the non built-up pixels of human inhabited regions of

Earth. Thus, the surface UHI, as defined in this study, is the temperature change experience

by people as they move into built-up areas.

Since the footprint of the UHI varies significantly and can be up to 3.9 times the city

area for nighttime, the choice of the rural pixel can significantly affect the calculated UHI

intensity (Zhou et al., 2015). In many cities, especially developing cities, the city is sur-

rounded by satellite towns with their own urban influence. This lack of standardization of

the urban and rural area in the context of the UHI effect was also pointed out by Stewart

and Oke (2009). The SUE algorithm, as implemented in this study, merges many of these

satellite towns by using urban clusters, which is one step towards standardization.

A.6.3 Limitations of the Study

While the SUE algorithm, as used in this study, solves a few methodological issues in

the existing UHI literature, it has limitations mainly due to the datasets used in the present

study. The urban extent database used in the present study is based on satellite observations

from 2001-2002. Urban areas have grown since then, especially Asian and African cities,
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which have experienced tremendous urban sprawl in the last decade. The urban pixels of

the MODIS MCD12Q1 raster data have also remained same since 2002 (Li et al., 2017). In

addition, due to the nature of the urban extent data used in the study, some MODIS urban

pixels transcend the urban extents, leading to a reduction of urban data points for some

clusters. Given the large number of data points, this does not cause widespread biases

at the global or regional scale. Since we do not use explicit buffers around the urban

areas, the rural reference sprawls in an anisotropic manner, which could create biases in

the estimated surface UHI for individual cities. Buffer-based estimates of surface UHI of

coastal cities have the same problem, with the data from the buffer over the water pixels

not being used as a part of the rural reference. In addition to the anisotropy in the rural

reference, the percentage of urban clusters within each pixel varies significantly (Fig. A.4),

from 10% to roughly 98%. Caution should be exercised when comparing the surface UHI

of individual clusters because of this disparity in the percentage of urban area between

different clusters.

These are mostly issues with the datasets used, not the SUE algorithm itself. New,

more recent urban datasets, if available, can be used in conjunction with the SUE algorithm

to create updated maps of the surface UHI.

While MODIS data products are relatively accurate over homogeneous terrain, their

accuracy decreases substantially over heterogeneous surfaces, for instance, urban areas.

To control for this, we have only considered the pixels with less than 3 K uncertainty.

We initially tried using only pixels with uncertainty of less than 1 K. However, doing so

removes the majority of urban pixels. It should be noted that this uncertainty is an issue

with all satellite-based observations of UHI intensity.

In addition to the uncertainty of the urban pixels, the MODIS thermal band used for

LST retrieval is constrained to clear sky conditions. The impact of cloud contaminated

pixels could significantly alter the estimated UHI intensity. While we have considered
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only clear sky pixels in our calculations, the frequency of cloudy pixels is a function of

season and may impact our estimates of the UHI intensity due to biases in sampling. It is

important to keep these uncertainties in mind while interpreting the results of this study.

A.7 Conclusions

A new algorithm (SUE) is designed to study the surface UHI at a global scale. The study

validates a few well-known surface UHI characteristics, like latitudinal variability and

the annual, summertime, and wintertime intensity. The algorithm extends the analysis

by using a complete urban extent dataset and all available MODIS satellite observations.

Most important is the analysis of multiple years of data to reduce uncertainties in surface

UHI estimates and investigating long-term variability of the surface UHI.

Globally, the daytime surface UHI is higher than the nighttime UHI, with the summer

season showing the highest values compared to winter. The urban extent dataset is divided

into climate zones using the Koppen-Geiger climate classification system to investigate the

differences in the diurnal, seasonal, and long-term variability in the surface UHI for the

first time using a consistent methodology. All climate zones other than arid show higher

daytime surface UHI intensities, with snow urban clusters showing the highest diurnal

range and maximum daytime values. There are significant differences in the seasonality

of the surface UHI for different climate zones, in particular for arid and equatorial urban

clusters. The long-term variability in the surface UHI is investigated using yearly land

use classes from MODIS. A consistent increase is seen in the surface UHI intensity for

urban clusters, particularly for daytime, indicating a temporal redistribution of heat due to

urbanization.

Finally, we investigate the importance of vegetation in controlling the surface UHI

intensity. Vegetation is a strong modulator of the seasonal variability of the surface UHI,
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and may also affect the long-term changes observed in this study. Since the difference

in vegetation between the urban and rural area is a strong predictor of the surface UHI

intensity, increased urban vegetation can be used to dampen UHI intensity in cities prone

to heat stress. In particular, seasonal urban irrigation has the potential to mitigate high

UHI during the hot season.

This study demonstrates that the urban clusters in different background climates show

distinct diurnal, seasonal, and long-term variability using a globally consistent dataset for

the first time. Our results indicate that background climate should be taken into consid-

eration for city-specific UHI mitigation policies, as well as when planning new cities and

expanding existing urban areas.
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B.1 Abstract

The COVID-19 lockdowns drastically reduced human activity, emulating a controlled ex-

periment on human-land-atmosphere coupling. Here using a fusion of satellite and re-

analysis products, we examine this coupling through changes in the surface energy budget

during the lockdown (1st April to 15th May 2020) in the Indo-Gangetic Basin, one of the

world’s most populated and polluted regions. During the lockdown, the reduction (>10%)

in columnar air pollution compared to a 5-year baseline, expected to increase incoming

solar radiation, was counteracted by a ≈30% enhancement in cloud cover, causing little

change in available energy at the surface. More importantly, the delay in winter crop har-

vesting during the lockdown increased surface vegetation cover, causing almost half the

regional cooling via evapotranspiration. Since this cooling was higher for rural areas, the

daytime surface urban heat island (SUHI) intensity increased (by 0.20 to 0.41 K) during

a period of reduced human activity. Our study provides strong observational evidence of

the influence of agricultural activity on rural climate in this region and its indirect impact

on the SUHI intensity.

B.2 Introduction

Human-induced changes in the Earth’s surface climate have traditionally been difficult

to constrain (Pielke et al., 2002; Lawrence et al., 2016), particularly since these changes

typically occur at time scales similar to natural decadal perturbations. In contrast, the

COVID-19 lockdowns – the restrictions placed by various governing bodies as a response

to the COVID-19 pandemic in 2020 – caused unprecedented slowdown in human activity

(Rutz et al., 2020), were short in duration, and yet intense enough to produce measurable

effects. They can thus serve as natural experiments on the anthropogenic control on sur-
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face climate. An ideal study area to explore the results of this perturbation experiment is

the Indo-Gangetic Basin (IGB), one of the most densely populated regions on the planet

with high levels of air pollution (Dey et al., 2011). Covering the majority of North India,

the IGB has a subtropical monsoon climate, and is a global hot spot for land-atmosphere

coupling (Koster et al., 2004). From late March to end of May, a countrywide lockdown

was imposed in India as a response to COVID-19. This lockdown strictly restricted peo-

ple’s movement outside their homes, suspended educational, industrial, and hospitality

services, and limited all transportation systems (Government of India, 2020).

Being both heavily cultivated and rapidly urbanizing (Seto et al., 2012; Siderius et

al., 2014), the IGB is strongly influenced by anthropogenic changes in land use and land

cover (Sarangi et al., 2018; Barton et al., 2019). Human influence on surface climate is

distinct for urban and rural areas. Urbanization modifies the biophysical properties of the

surface due to replacement of natural vegetation with built-up structures. Consequently,

cities are characterized by higher temperatures compared to their surroundings – the urban

heat island (UHI) effect (Oke, 1982). The UHI is commonly calculated as the temperature

difference between the city and a non-standard rural area around the city. Rural areas are

influenced by land use and land management practices, which is primarily due to agricul-

ture in this region.

The reduction in atmospheric aerosols during the lockdown (up to 45% reduction for

some Indian states) is well-documented (Ranjan et al., 2020) and, all else remaining con-

stant, would increase incoming surface radiation. Since urban and rural areas may have

different levels of pollution, this radiative forcing change can impact the UHI intensity

(Cao et al., 2016; Li et al., 2018). However, the UHI, and surface climate in general, is

also modulated by non-radiative pathways (Zhao et al., 2014). The lockdown restrictions

delayed crop harvesting (Rawal et al., 2020), which would maintain high vegetation cover

and can enhance latent heat flux (λE), a non-radiative pathway of surface heat dissipation.
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Previous studies have noted that the seasonality of the UHI in this region is influenced by

the variability in surface vegetation in the rural area (Chakraborty et al., 2019; Venter et

al., 2020). Agricultural influence on surface climate in this region is not well-captured by

LSMs due to inaccurate representation of vegetation properties and the poorly constrained

influence of irrigation on the hydrological cycle (Chakraborty et al., 2019; Barton et al.,

2019). Thus, beyond the widely studied changes in atmospheric composition (Venter et

al., 2020; Quere et al., 2020), the lockdowns provide a unique opportunity to ask broader

questions about human-land-atmosphere interactions in the IGB. For example, the role of

these interactions in modulating the ensuing South Asian monsoon circulations is critical

to the livelihood of over a billion people dependent on this region (Turner et al., 2019).

Here we examine the changes in the surface temperature in the IGB during the lock-

down with a focus on the UHI, allowing us to separate human influence on urban and

rural surface climate, particularly due to air pollution and land use. First, using a suite of

satellite observations, we isolate changes in atmospheric and surface properties over urban

areas and their rural periphery. Second, since satellite observations are restricted by the

presence of clouds and do not directly provide estimates of the surface energy budget, we

use a reanalysis dataset to gain a mechanistic understanding of the observed perturbations

in rural surface climate.

B.3 Materials and Methods

B.3.1 Urban-Rural Delineations for Region of Interest

We only consider the Indian portion of the IGB (Fig. B.1a; ≈50000 km2), to avoid uncer-

tainties arising from variations in lockdown periods in other countries. An urban cluster

database was developed for this region by generating polygons covering continuous groups
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of high-density urban pixels from the Global Human Settlement Index (GHSL) for 2015

(Pesaresi et al., 2013). The corresponding normalized rural reference (roughly equal to

area of urban cluster) for each of these clusters was created using an iterative buffering

procedure with a step size of 300 m. Our methodology generates 1420 urban-rural delin-

eations for the region.

Figure B.1: Map of study area. The black polygon in sub-figure a show the Indo-Gangetic
Basin (IGB). The generated urban clusters are in red, while their corresponding normalized
rural buffers are shown in blue. Sub-figure b shows the distribution of three relevant land
cover categories for the IGB from the European Space Agency Climate Change Initiative
land cover dataset for 2018.
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B.3.2 Satellite Observations

Multiple satellite-derived products were used to extract urban-rural differentials in relevant

variables (details in Table B.1), including Land Surface Temperature (LST) for calculating

surface UHI (SUHI; Wain et al., 2007), reflectance data from Moderate Resolution Imag-

ing Spectroradiometer (MODIS) to estimate surface vegetation (Pagano et al., 1993), and

metrics of air pollution, including aerosol optical depth (AOD) from MODIS (Remer et al.,

2006) and individual pollutant estimates from the Sentinel-5P TROPOspheric Monitoring

Instrument (TROPOMI) sensor (Veefkind et al., 2012). We also extract cloud fraction

(CF) from Sentinel-5P since clouds strongly affect the radiative budget and can be higher

over cities (Theeuwes et al., 2019). Finally, the Black-Sky Albedo (BSA) and White-Sky

Albedo (WSA), the reflectivity of the surface for direct beam and diffuse radiation, re-

spectively, were extracted from MODIS (Strahler et al., 1999). These can be combined

to derive total surface albedo (α), which is known to vary between urban and rural areas

(Rizwan et al., 2008). Although the MODIS observations are daily, the multi-day (see

Table B.1) composites are used to reduce cloud contamination (Chakraborty et al., 2020).

The normalized difference vegetation index (NDVI) is a proxy for green vegetation

(Jouse et al., 1973) and used here to estimate the impact of the lockdown on surface veg-

etation cover. We calculate NDVI from the NIR (near infra-red) and RED bands of the

8-day composite MODIS surface reflectance product, available for 1 km x 1 km grids

(Table B.1), as:

NDVI =
NIR− RED

NIR + RED
(B.1)

The lockdown in India started from midnight March 24th and continued in a limited

capacity till June 7th. To remove the noise from the transition periods, we considered

April 1st to May 15th, 2020 to be the lockdown case. The 5-year (2015-2019) mean of
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the data from April 1st to May 15th was treated as the baseline (only April 1st to May

15th, 2019 for TROPOMI due to data unavailability). Since the satellite observations

are relatively coarse (see Table B.1), only urban clusters with an area of above 10 km2

were considered. This threshold, along with cloud screening, leaves 382 clusters for the

MODIS and Sentinel-derived CF data (Fig. B.2) and 302 clusters for the Sentinel-derived

air pollutant data.

Figure B.2: Distribution of urban and rural units of calculations used in the study. Sub-
figure a shows the density plot of the urban clusters with areas greater than 1 km2 used
in the study after cloud screening of the data. Sub-figure b shows the distribution of the
buffer widths used to calculate the rural references following the integration procedure
used to minimize area difference between urban areas and their references.

Urban and rural means of all the variables of interest were extracted after regridding to

300 m ESA CCI grids using the Google Earth Engine platform (Gorelick et al., 2017). The
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urban values were calculated as the spatial means of all the urban pixels, as defined by the

European Space Agency Climate Change Initiative (ESA CCI) land cover data (Bontemps

et al., 2013), within an urban cluster. The corresponding rural values are the spatial means

of the non-urban, non-water pixels (from the ESA data) in the rural references. The urban-

rural differential in LST is the SUHI, while for the other variables, we use the subscript

urb−rur. We also calculate the averages of each variable (and their differences) weighted by

the urban cluster areas. Since larger urban areas are known to have higher SUHI intensity,

area weighing gives us regional mean SUHI (versus the urban cluster mean SUHI).
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Table B.1: Summary of satellite products used in the present study.

B.3.3 Reanalysis Data

The MERRA-2 reanalysis assimilates bias-corrected satellite observations of aerosols and

provides estimates of the aerosol direct radiative effect, making it ideal for studying the

impacts of the COVID-19 lockdowns. Though MERRA-2 also includes estimates of kd,

inter-reanalysis evaluations show that it significantly underestimates kd compared to other

products (Chakraborty & Lee, 2021). Thus, MERRA-2 data were not used to calculate α.
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Instead, MERRA-2 was used to get all-sky estimates of perturbations in the surface and

atmospheric variables (since satellites only provide clear-sky estimates) and to diagnose

reasons for perturbations in the rural LST. The MERRA-2 variables were based on hourly

data from 12:30 pm to 2:30 pm local time, corresponding to the 1:30 pm MODIS Aqua

overpass.

B.3.4 Statistical Analysis

We used two reanalysis products - the European Centre for Medium-Range Weather Fore-

casts (ECMWF) Reanalysis 5 (ERA5; Hersbach et al., 2020), available at 0.25◦x0.25◦,

and the Modern-Era Retrospective analysis for Research and Applications, Version 2

(MERRA-2; Gelaro et al., 2017), available at 0.5◦x0.625◦. The 5-year (2015-2019) mean

of the diffuse fraction (kd) of the ERA5 reanalysis was used to calculate α from BSA and

WSA (Qu et al., 2015) using the equation:

α = kdWSA + (1− kd)BSA (B.2)

For each case, the centroid of the urban and rural polygons was located and kd was

extracted for the ERA5 grid containing it, similar to (Chakraborty et al., 2020).

To examine reasons for any potential SUHI change, we considered the temporal changes

(∆, variable value during the lockdown minus value of the reference period) in AODurb−rur,

NDVIurb−rur, αurb−rur, and CFurb−rur as the predictors. For robustness, we used two meth-

ods –linear regressions and random forest (RF) regression. For the linear regressions, we

considered each of these four predictors (∆AODurb−rur, ∆NDVIurb−rur, ∆αurb−rur, and

∆CFurb−rur) and all their combinations and subsets. Since the relationships between the

predictors and ∆SUHI are not necessarily linear, we also checked the consistency of our

results using RF regressions. RF regressions use ensembles of decision trees to detect
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non-linear relationships and are less sensitive to outliers than parametric linear models

(Breiman, 2001). To prevent overfitting, we trained the models using 70% of the data and

checked the model accuracy using the remaining data. The training and accuracy assess-

ment were repeated 50 times with different random splits of training and validation data

(Xu et al., 2001). The signal can be hard to separate from the noise in the satellite obser-

vations when examining small perturbations. Thus, we also correlate the variables after

binning the data into 5 percentile bins, assuming that this noise is random and contributes

to the unexplained variance within bins.

B.3.5 Intrinsic Biophysical Mechanism

Since the statistical analyses using satellite observations are primarily for hypothesis gen-

eration and do not reveal the physical mechanisms for the SUHI increase, we employed

the theory of Intrinsic Biophysical Mechanism (IBPM; Lee et al., 2011; Zhao et al., 2014;

Cao et al., 2016; Chakraborty & Lee, 2019a), implemented using the MERRA-2 variables

(Chakraborty & Lee, 2019a), to diagnose and quantify the reasons for the change in the

LSTrur in the region. Conceptually, the total LST change (∆LST) due to a forcing agent

is the sum of the changes in the blending height temperature (∆BHT), where the blending

height is the height at which surface heterogeneity has negligible impact on atmospheric

variables (Mahrt, 2000), and the local temperature response (∆T):

∆LST = ∆T + ∆BHT (B.3)

∆BHT is the results of atmospheric factors while ∆T is the surface response to atmo-

spheric forcing. According to the IBPM theory, the local temperature response is:
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∆T =
λ0

1 + f
∆K↓(1− α) +

λ0
1 + f

∆L+
−λ0

(1 + f)2
(R∗n −G)∆f1

+
−λ0

(1 + f)2
(R∗n −G)∆f2 +

λ0
1 + f

∆G (B.4)

The terms on the right-hand side of Eq. B.4, from left to right, are the contributions

to ∆T from shortwave radiative forcing, longwave radiative forcing, energy redistribu-

tion through evaporation, energy redistribution through convection, and change in ground

heat flux. Here ∆K↓ is the change in incoming shortwave radiation, ∆L is the change in

absorbed longwave radiation, and ∆G is the change in ground heat flux. Since the net ra-

diation Rn is dependent on LST (through the L↑ term), we define an apparent net radiation

(R∗n) that is not a function of the land surface by replacing LST with BHT.

R∗n = K ↓ (1− α) + L ↓ (1− ε)− εσBHT4 (B.5)

where ε is the surface emissivity and σ is the Stefan Boltzmann constant (5.67 × 10−8 kg

s−3 K−4). λ0 is the temperature sensitivity due to longwave feedback and is given by:

λ0 =
1

4εσLST3 (B.6)

and f is a factor denoting energy redistribution through non-radiative pathways like con-

vection and evaporation, which can be calculated using the diagnostic equation:

f =
λ0

LST− BHT
(R∗n −G)− 1 (B.7)

The change in f due to evaporative (∆f1) and convection (∆f2) can be calculated from:
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∆f1 = −f ∆β

β(1 + β)
(B.8)

∆f2 = −f∆ra
ra

(B.9)

where β is the Bowen ratio ( H
λE

), where H is the sensible heat flux and λE is the latent

heat flux, and ra is the aerodynamic resistance, formulated as:

ra =
ρCp(LST− BHT)

H
(B.10)

Here ρ is the air density, while Cp is the specific heat capacity of air at constant pressure.

All the perturbation terms were calculated from the MERRA-2 reanalysis as the difference

between the 5-year baseline and the lockdown period. f and λ0 were calculated for the

baseline period, while β, ra, and λ0 are the averages of the two periods. Since f cannot

have a negative value, the grids with f .0 were excluded from the analysis. The im-

plementation of the IBPM method using MERRA-2 data used here is an extension of the

methodology employed in (Chakraborty & Lee, 2019a).

B.4 Results

B.4.1 Changes in Urban-Rural Differentials During Lockdown

The daytime SUHI increased (non-weighted mean from 0.23 K to 0.43 K; area-weighted

mean from 0.56 K to 0.97 K) during the COVID-19 lockdown period compared to the 5-

year baseline (Fig. B.3 and Fig. B.4), with 67% or 257 of the 382 urban clusters showing

an increase (Fig. B.5). In contrast, the nighttime ∆SUHI was statistically insignificant

(p-value > 0.01). Daytime LST decreased during the lockdown (compared to baseline),
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though the mean decrease over rural locations was greater (-1.96 K non-weighted; -1.55 K

weighted) compared to that over urban regions (-1.76 K non-weighted; -1.14 K weighted).

Figure B.3: Perturbations to land surface temperature (LST) and surface urban heat island
(SUHI) intensity. Sub-figures a and b show the mean (not weighted by urban cluster area)
land surface temperature (LST) and surface urban heat island (SUHI) for urban clusters
and their rural references for the baseline period, as well as their perturbed values during
the lockdown period, for daytime and nighttime, respectively. The values above the bars
show the mean values (percentage change during lockdown period for SUHI) and the
error bars represent the 95% confidence interval of the mean. The changes shown here are
summarized in Table B.2. Sub-figure c shows a map of the urban clusters in the region of
interest and the change in their spatial mean daytime SUHI during the lockdown compared
to the five year baseline.
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Table B.2: Summary (mean, 95% confidence intervals of mean) of satellite-derived esti-
mates of the main variables of interest for urban clusters and their rural references. The
spatial mean of each urban (and corresponding rural) polygon is treated as a sample point.
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Figure B.4: Perturbations to land surface temperature (LST) and surface urban heat island
(SUHI) intensity. Sub-figures a and b show the mean (weighted by urban cluster area)
land surface temperature (LST) and surface urban heat island (SUHI for urban clusters
and their rural references for the baseline period, as well as their perturbed values during
the lockdown period, for daytime and nighttime, respectively. The values above the bars
show the mean values (percentage change during lockdown period for SUHI) and the error
bars represent the 95% confidence interval of the area-weighted mean.
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Figure B.5: Distribution of a daytime ∆SUHI and b ∆NDVIurb−rur among the urban
clusters used in the study.

To explain this differential perturbation in daytime LSTurb and LSTrur, we consider

major atmospheric (CF and AOD) and surface (NDVI and α) factors that impact the SUHI.

The air quality over both urban and rural locations improved during the lockdown. This

reduced air pollution is evident from both MODIS-derived AOD (≈5-6% decrease; Figs

2a and S5a) and individual air pollutants measured by TROPOMI (≈14% and ≈19% de-

crease in urban NO2 and SO2, respectively; Fig. B.8). AOD decreases in roughly 67%

of the urban clusters (increasing in others) and for most non-urban grids in the IGB (Fig.

B.9a). The small magnitude of MODIS-derived AODurb−rur could be due to the large

contributions from natural dust and biomass burning aerosols, as well as occurrence of

turbulently mixed deep boundary layers, in this region during this period (Sarangi et al.,
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2016). Moreover, there was a surprisingly large (>36% for non-weighted; >43% for

weighted) increase in CF during the lockdown (Fig. B.6d and Fig. B.7d), though some

regions show a decrease (Fig. B.9b).

Figure B.6: Changes in major surface and atmospheric factors. Sub-figures a–d show
the mean (not weighted by urban cluster area) aerosol optical depth (AOD), normalized
difference vegetation index (NDVI), surface albedo (α), and cloud fraction (CF) for urban
clusters and their rural references for the baseline period, as well as their perturbed values
during the lockdown. The values above the bars show the mean values for the baseline
period (2015–2019 baseline for everything other than CF; 2019 baseline for CF) and the
percentage change from that value. The error bars represent the 95% confidence interval
of the mean. The changes shown here are summarized in Table B.2.

We find large (>12%) increases in NDVI during the lockdown period. These increases

are generally higher in rural references (13.3% or 0.043) than in urban areas (12.8% or

0.038; Fig. B.6b), with ∆NDVIurb−rur being negative in ≈59% of the urban clusters (Figs

B.5b, B.9a, and B.10a). The positive ∆NDVIrur (Fig. B.10b) is consistent with the impact

of the lockdown on agricultural activity, which is the predominant land use for ≈88% of
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Figure B.7: Changes in major surface and atmospheric factors. Sub-figures a, b, c, and d
show the mean (weighted by urban cluster area) Aerosol Optical Depth (AOD), normalized
difference vegetation index (NDVI), surface albedo (α), and cloud fraction (CF) for urban
clusters and their rural references for the baseline period, as well as their perturbed values
during the lockdown. The values above the bars show the mean values for the baseline
period (2015-2019 baseline for everything other than CF; 2019 baseline for CF) and the
percentage change from that value. The error bars represent the 95% confidence interval
of the area-weighted mean. The values shown here are also summarized in Table B.2.
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this area according to the ESA CCI data (Fig. B.2b). The lockdown overlapped with the

harvesting season for rabi (winter) crops, which, together with the drier conditions dur-

ing this period, reduces surface vegetation during regular years, as can be seen from the

moving average of MODIS-derived 8-day NDVIrur in Figure 3c. The delay in harvesting

activity (Rawal et al., 2020) may have temporally shifted this normal drop in NDVIrur,

contributing to surface greening compared to the baseline (Fig. B.11c). The ∆NDVIrur is

higher than the inter-annual standard deviation of NDVIrur during this period, also demon-

strated by the largest standardized anomalies of the year during the lockdown. Most of IGB

shows this surface greening, with ∆NDVIrur, ranging from -0.01 (5th percentile) to 0.11

(95th percentile), as well as a reduction in LSTrur (Figs B.11a and B.11b) from -4.3 K (5th

percentile) to 0.4 K (95th percentile), with the SUHI increasing compared to baseline (Fig.

B.11d). Simultaneously, α decreased in both urban (-2.6%) and rural (-2.9%) areas (Figs

B.6c and B.7c). Paired two-sample t-tests confirm that all the satellite-observed changes

in the variables, other than that for nighttime SUHI, are statistically significant (p-value <

0.01). The 95% confidence intervals for the mean of each variable are in Table B.2.

B.4.2 Attribution of Daytime SUHI Enhancement

Previous studies have shown relationships between AODurb−rur and SUHI (Cao et al.,

2016; Li et al., 2018). Here we find almost no associations between the perturbations in

the two during the lockdown period (Fig. B.14a; r2 = 0.02 for cluster; not statistically

significant for binned). Similarly, AODurb−rur and daytime SUHI are not well-correlated

during the baseline and lockdown periods (Fig. B.12b; r2 ≈ 0). However, ∆NDVIurb−rur

shows a relatively strong inverse relationship with ∆SUHI (Fig. B.14b; r2 = 0.16 for

cluster; 0.76 for binned). Given the generally higher ∆NDVIrur, the pause in human

activity in the rural area may have contributed to the enhanced daytime SUHI. This im-

pact of urban-rural vegetation differentials on SUHI is consistent with previous studies
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Figure B.8: Sub-figures a, b, c, d, e, and f show the mean (weighted by urban cluster
area) Nitrogen Dioxide (NO2), Sulphur Dioxide (SO2), Ozone (O3), Carbon Monoxide
(CO), Formaldehyde (HCHO), and Methane (CH4) concentrations for urban clusters and
their rural references for the 2019 baseline, as well as their perturbed values during the
lockdown. The values above the bars show the mean values for the baseline period and the
percentage change from that value. The error bars represent the 95% confidence interval
of the mean.
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Figure B.9: Regional changes in aerosols and clouds. Sub-figures a and b show maps of
the changes in rural aerosol optical depth (AODrur) and cloud fraction (CFrur) during the
lockdown compared to the baseline (5-year for AOD and 1-year for CF).
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Figure B.10: Map of the urban clusters in the region of interest and the change in their
a spatial mean urban-rural differential in NDVI (∆NDVIurb−rur) and b spatial mean rural
NDVI (∆NDVIrur) during the lockdown compared to the 5-year baseline.
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(Peng et al., 2012; Chakraborty & Lee, 2019b) and is corroborated by the relatively strong

associations between NDVIurb−rur and daytime SUHI for the two periods (Fig. B.12a).

Although ∆αurb−rur shows a positive relationship with ∆SUHI (r2 = 0.05 for cluster; 0.52

for binned), this relationship is not physically possible in isolation, since a higher α im-

plies lower absorption of solar insolation by the surface, and thus, lower ∆SUHI. Since

α and NDVI are correlated (Fig. B.13), the positive relationship between ∆αurb−rur and

∆SUHI may be a statistical artifact of the relatively higher NDVIrur. Neither CFurb−rur

and daytime SUHI intensity, nor their perturbations from the baseline to the lockdown, are

correlated (Figs B.14d and B.12c).
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Figure B.11: Contributions of different pathways to regional land surface temperature
(LST) change. Sub-figure a shows contributions of all pathways, namely shortwave radia-
tive forcing, longwave radiative forcing, evaporation, convection, and ground heat storage
to the total calculated local temperature change (∆T) in the Indo-Gangetic Basin during
the lockdown compared to the five year baseline. The corresponding ∆T, ∆LST, and
change in blending height temperature (∆BHT) in MERRA-2 are also shown. The stan-
dard errors are displayed in all cases. Sub-figure b shows the correlations between the
MERRA-2 grid-averaged leaf are index (LAI) and the corresponding ∆T from MERRA-
2, the calculated ∆T using the IBPM framework, and the contributions to ∆T through
the evaporative pathway and convective pathways. Each data point corresponds to a grid
cell average. The lines of best fit are shown and the corresponding equations (including
confidence bounds for the slopes of the lines, sample sizes, and p-values) are annotated.
Values that are outside the 1–99 percentile of the total diagnosed local temperature change
are considered outliers and not shown in the scatter plot.
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Figure B.12: Correlations between surface urban heat islands (SUHI) and the urban-rural
differentials in a normalized difference vegetation index (NDVIurb−rur), b Aerosol Optical
Depth (AODurb−rur), c cloud fraction (CFurb−rur), and d surface albedo (αurb−rur) respec-
tively, for all urban clusters during the lockdown (in blue) and 5-year baseline period (in
red). The lines of best fit and coefficients of correlation are shown.

We use multiple linear and RF regressions to provide further statistical robustness to

our findings (Table B.3). In general, ∆NDVIurb−rur explains the largest portion of the

variability in ∆SUHI (Adjusted R2=0.15), followed by ∆αurb−rur, ∆AODurb−rur, and

CFurb−rur. The permutation importance scores from the RF models also support the pri-

mary control of ∆NDVIurb−rur on ∆SUHI (Table B.3).
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Table B.3: Summary of data-driven examination of the control of the urban-rural differ-
entials on the change in SUHI using multiple linear and random forest (RF) regressions.
For the linear regressions, the combination of variables that lead to the highest adjusted
R2 is listed for increasing subset size. For the RF regression, both the mean and standard
deviation of the permutation feature importance scores and r2(based on the 50 random
training/validation splits) are noted.

The percentage changes in the atmospheric variables (AOD and CF) are higher over

urban areas compared to the rural areas during the lockdown period and the surface prop-

erties (NDVI and α) change more for rural areas (Figs B.6 and B.7). Although 2020 was

already wetter than regular years (Kumar et al., 2017), a further reduction in AOD over

the study area may have perturbed the regional circulation and thermodynamics (Lau et

al., 2006; Bollasina et al., 2011), creating an environment conducive to more cloud for-

mation. It may also be possible that the lower aerosol loading reduced the cloud-burning

effect (Ackerman et al., 2000), thus increasing CF. Finally, the surface greening could also

enhance CF (Teuling et al., 2017). We expect a greater decrease in AOD over urban clus-

ters to correspond to an increase in K↓, which can enhance SUHI intensity. However, our

statistical analysis does not support this hypothesis. Instead, the observed positive ∆SUHI

is associated with the higher vegetation cover over rural areas. This control of vegetation

cover on LST is further corroborated by the negative correlations between LST and NDVI

for the urban and rural units (Fig. B.15). The relatively weaker correlations for the cluster-

level data in Fig. B.14b compared to Figs B.12a and B.15 (and previous studies (Peng et
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Figure B.13: Correlations between surface albedo (α) and normalized difference vegeta-
tion index (NDVI), for rural references during the lockdown (in blue) and for the 5-year
baseline period (in red). The lines of best fit and coefficients of correlation are shown.
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al., 2012; Chakraborty & Lee, 2019b, Yue et al., 2007)) is because we are dealing with

differences of differences in Fig. B.14b during a time of the year with low expected SUHI

intensities (Fig. B.14d), making the signal hard to isolate from the noise.

Figure B.14: Statistical examination of daytime surface urban heat island (SUHI) en-
hancement. Sub-figures a–d show the correlations between daytime change in surface
urban heat island (SUHI) (∆SUHI) during the lockdown compared to the five year
baseline and the respective change in urban–rural differential in aerosol optical depth
(∆AODurb−rur), normalized difference vegetation index (∆NDVIurb−rur), surface albedo
(∆αurb−rur), and cloud fraction (∆CFurb−rur), respectively. Each data point for the raw
case (in orange) corresponds to an urban cluster. The lines of best fit are shown, and
their corresponding equations (along with their sample sizes and p-values) are annotated.
Values that are outside the 1–99 percentiles of the change in the predictor variables are
considered outliers and not shown in these scatter plots. Correlations (in red) are also
shown after binning every 5th percentile of ∆SUHI and the corresponding changes in the
predictors. The vertical black lines show the standard deviation of ∆SUHI in each bin.
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Figure B.15: Correlations between land surface temperature (LST) and normalized dif-
ference vegetation index (NDVI), for a urban clusters and b rural references during the
lockdown (in blue) and for the 5-year baseline period (in red). The lines of best fit and
coefficients of correlation are shown.

B.4.3 Perturbations to Rural Background Surface Climate

The lack of large-scale continuous observations of meteorological variables in urban areas

makes diagnosing these patterns for all-sky conditions difficult using in-situ observations.

Instead, we use the MERRA-2 reanalysis, which is observationally constrained by ground-

level measurements of surface meteorology and satellite measurements of columnar AOD,

and physically constrained by the model components (Gelaro et al., 2017). MERRA-2

primarily represents the rural background since it does not incorporate urban land cover.

Since, as suggested by the satellite-derived NDVI and α (Fig. B.6), urban surfaces changed

less than rural surfaces during the lockdown, the reanalysis data can be used to generate

mechanistic insights about the SUHI enhancement.

The MERRA-2 reanalysis captures the direction of the changes in the region during

the lockdown compared to satellite observations (Table B.4). Although the midday aerosol

direct radiative effect in MERRA-2 decreases by almost 25% (from -78.4±12.6 W m−2 to

-58.7±13.3 W m−2) during the lockdown, with the potential to increase K↓ by 19.8±5.1
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W m−2, we find an overall reduction in K↓ (-10.5±39.8 W m−2). This decrease in K↓ is

due to the compensating effect of increased cloudiness during the lockdown, as well as

the higher water vapor content in the atmospheric column, as seen from the higher near-

surface relative humidity (Table B.4). Overall, the total absorbed energy by the surface

decreases slightly (-10.4±32 W m−2) during the lockdown despite the negative ∆AODrur.

Separating the contributions from both radiative and non-radiative pathways that can

change LST reveals large evaporative cooling (-1.79±0.05 K) during this period (Fig.

B.16a), which is expected if vegetation cover increased. The diagnosed and MERRA-2

calculated ∆T are similar in magnitude (-1.29 K versus -1.22 K) and in spatial distribu-

tion (Fig. B.16b). MERRA-2 uses prescribed vegetation, with identical leaf area index

(LAI; regional mean = ≈0.79) for the two periods. However, since it is constrained by

observed surface meteorology, it captures the decrease in Bowen ratio – the ratio of sen-

sible heat flux (H) and λE – during midday (from 2.87±3.02 for baseline to 1.24±0.76

during the lockdown; Table B.4), which is an expected impact of surface greening. The

higher precipitation, latent heat, cloud cover, and relative humidity point to a more intense

hydrological cycle during the lockdown compared to regular years (Table B.4).
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Table B.4: Regional midday (1:30 pm local time) values (mean ± standard deviation) of
relevant variables for the baseline, the lockdown, and their corresponding changes from
both the MERRA-2 reanalysis and the satellite observations.

The satellite-observed negative ∆NDVIurb−rur suggests that the increase in evapora-

tive cooling during the lockdown was more for rural areas compared to urban areas. This

would be true even if NDVIurb and NDVIrur had changed identically, since urban areas are

generally more moisture-limited. Figure 5b shows the correlations of ∆T from MERRA-

2, the IBPM calculations, and contributions due to evaporation and convection with LAI.
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The negative correlations between LAI and ∆T demonstrate a stronger cooling response

during the lockdown over more densely vegetated surfaces. Here the lowest LAI grids rep-

resent relatively urbanized areas. The increasing positive temperature response through the

convective pathway with LAI suggests that this is a negative feedback to the evaporative

cooling (Gerken et al., 2019). This convective feedback can be understood either in terms

of energy conservation or through evaporation-induced near-surface stability. A relative

increase in λE under similar (or reduced) available energy requires a corresponding de-

crease in H. Alternatively, the additional evaporative cooling of the surface compared to

the blending height renders the lower atmosphere relatively stable compared to the base-

line period, impeding the dissipation of available energy via H .

Overall, ∆T is almost a third of ∆LST, with the other two-thirds attributable to atmo-

spheric factors, including AOD and CF (Fig. B.16a). The IBPM results show that the sum

of the evaporative cooling and its convective feedback accounted for roughly 79% of the

midday ∆T, while the evaporative cooling alone accounted for roughly 46% of the cor-

responding ∆LST (of -3.92 K). The land contribution to ∆LST found here is probably a

lower bound estimate since there is strong coupling between the land and the atmosphere.

For instance, enhanced surface evaporation due to the increase in vegetation cover would

also increase low level cloudiness through condensation feedback (Ban-Weiss et al., 2011),

lowering both BHT and LST. A similar theoretical diagnosis is not possible for the urban

surfaces explicitly since the MERRA-2 land cover dataset does not consider urban areas.

Nonetheless, these results can explain the SUHI increase, as the implicit assumption is that

the surface characteristics of the rural areas changed more than those of the urban areas

during the lockdown period, which is reasonable given the time scale.
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Figure B.16: Contributions of different pathways to regional land surface temperature
(LST) change. Sub-figure a shows contributions of all pathways, namely shortwave radia-
tive forcing, longwave radiative forcing, evaporation, convection, and ground heat storage
to the total calculated local temperature change (∆T) in the Indo-Gangetic Basin during
the lockdown compared to the five year baseline. The corresponding ∆T, ∆LST, and
change in blending height temperature (∆BHT) in MERRA-2 are also shown. The stan-
dard errors are displayed in all cases. Sub-figure b shows the correlations between the
MERRA-2 grid-averaged leaf are index (LAI) and the corresponding ∆T from MERRA-
2, the calculated ∆T using the IBPM framework, and the contributions to ∆T through
the evaporative pathway and convective pathways. Each data point corresponds to a grid
cell average. The lines of best fit are shown and the corresponding equations (including
confidence bounds for the slopes of the lines, sample sizes, and p-values) are annotated.
Values that are outside the 1–99 percentile of the total diagnosed local temperature change
are considered outliers and not shown in the scatter plot.
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B.5 Discussion and Conclusions

The UHI effect is traditionally viewed as an outcome of the replacement of the natural

landscape by built-up structures. The consequences of this land cover change are simpler

to define in the abstract than to measure in practice. While cities modify their local climate

as they expand, the UHI intensity is usually quantified using snapshot measurements in the

urban area and for some rural reference. For the SUHI, how to define this rural reference

remains a contentious issue (Peng et al., 2012; Martin et al., 2015; Martin-Vide et al.,

2015; Li et al., 2019). Generally, the urban-rural delineations are more clearly constructed

for less sprawling cities with very little land management surrounding the city centers.

Here we show an example of a region of the world with high human intervention in both

urban and rural areas, the interruption of which leads to the seemingly counter-intuitive

enhancement of the SUHI during a period of low human activity. Thus, the COVID-19

lockdown period illustrates the importance of the rural reference on the SUHI intensity

during a perturbation scenario, the relevance of which has previously only been examined

for the mean climate state in this region (Chakraborty et al., 2017; Kumar et al., 2017;

Shastri et al., 2017).

Our results can help contextualize a larger current discussion in the urban climate com-

munity on the utility of the UHI as a metric to examine urban public health (Manoli et al.,

2020b; Martilli et al., 2020b; Manoli et al. 2020c). The UHI intensity is the impact of

urbanization on local temperature (Manoli et al. 2020a). However, urban heat stress is

dependent on the absolute temperature, or more accurately, a combination of temperature,

humidity, and other factors (Lemonsu et al., 2015). As such, the relevance of UHI for

urban public health can be misleading during certain times because enhancement in UHI

intensity does not necessarily imply similar enhancement in heat stress (or even tempera-

ture) in urban areas. In agreement, Martilli et al. (2020a) argues that mitigating the UHI
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should not be the goal when addressing the public health consequences of urbanization.

In theory, one can reduce the UHI intensity by increasing the rural temperature, which

does not change the potential heat stress in the urban area. Here we see something sim-

ilar occurring, with the SUHI increasing due to rural areas cooling down more than the

urban core between the baseline and the lockdown periods, rather than due to an increase

in urban temperature. However, this is only the temporal perspective. From the spatial

perspective, it is also true that residents moving from rural to urban regions in the IGB

were exposed to higher temperatures than they would have had they remained in rural

areas. This separation of the temporal and spatial perspectives is critical to reconciling

the debate in the community. The criticisms of UHI as a metric primarily pertain to the

total impact of temperature on human health in urban areas. In contrast, since the UHI is

an abstract isolation of the contribution to that temperature from urbanization, it remains

theoretically important, assuming we establish a more consistent definition of the rural

reference to facilitate accurate inter-urban comparisons.

Lastly, our finding demonstrates the importance of human-land-atmosphere coupling

on the regional climate over South Asia as a whole. Agricultural practices in this re-

gion strongly control the vegetation phenology of the croplands, modulating how energy

is partitioned and dissipated from the surface through non-radiative means (Fig. B.11c).

As seen here, the importance of these non-radiative components on the LST is apparent,

even when input energy to the system is relatively stable, providing large-scale observa-

tional evidence of previously modeled results (Ban-Weiss et al., 2011). Over 88% of the

landmass in North India is agricultural (Fig. B.1b). Therefore, an increase in surface

vegetation due to agriculture can lead to large regional cooling, modify cloud formation,

and lower tropospheric stability. Moreover, enhanced evaporative cooling over the Indian

landmass during the monsoon onset period (as seen here) can also perturb the land-sea

thermal gradient - a major driver of monsoonal wind circulation (Roxy et al., 2015). Our
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study puts forth important observational evidence of human-induced control on surface

climate, which strengthens the need for the ongoing efforts to explicitly include these in

earth system models to better predict long-term climate change (Beckage et al., 2018;

Donges et al., 2020). For the UHI, the inclusion of human dynamics can help constrain its

future estimates, since urban and rural areas are expected to change differently in future

scenarios (Oleson, 2012).

Although our two-pronged approach using satellite observations and reanalysis prod-

uct demonstrates the consistency of these perturbations, a few uncertainties remain. First,

since 2020 was wetter than the baseline years (Table B.4), the NDVI perturbations seen

during lockdown may not have been solely due to the well-documented delay in harvesting

in this region (Rawal et al., 2020). The lockdown-induced anthropogenic pause could in-

fluence the natural variability, cloud cover, and rainfall (Latha et al., 2021; Timmerman et

al., Under Review), and in turn also affect the NDVI/LST. Regardless, the large, standard-

ized anomaly in NDVIrur during the lockdown, seen in Fig. B.11c, strongly suggests that

the lockdown played a role. The higher ∆NDVIrur (compared to ∆NDVIurb) and ∆SUHI

is also see when using 18-year (2003-2019) baseline from MODIS Aqua measurements

(Figs B.17a and B.17b). Moreover, NDVI differences are seen at urban-to-urban periphery

scale (5-30 km), which is much smaller than the inherent spatial scale of the anticipated

natural variability. Second, since the perturbations are small in magnitude, sensor noise

could account for some of the variability. Our results are qualitatively replicated when we

calculate the relevant variables from the MODIS Terra satellite (Figs B.17c and B.17d),

which has a different sensor and equatorial overpass time (≈10:30 am), indicating that the

perturbations are robust and cannot be just random noise from one sensor. Third, since our

study deals with regional changes using coarse satellite observations, we neither examine

the perturbations for individual urban clusters, which can vary from the mean changes

(Figs B.5a and B.5b), nor characterize intra-urban distributions. Some of these limitations

279



can be addressed with the development of better parameterized models for this region with

explicit irrigation schemes, which can clearly isolate the impact of the agricultural cycle

on regional climate.

Figure B.17: Sensitivity of changes in normalized differences vegetation index (NDVI),
land surface temperature (LST), and surface urban heat island (SUHI) to baseline and
sensor selection. Sub-figures a and b, show the mean NDVI and LST for urban clusters and
their rural references for an 18-year (2003-2019) baseline period, as well as their perturbed
values during the lockdown. Sub-figures c and d are similar, but based on measurements
from the Terra satellite and using 5-year (2015-2019) baseline. The error bars represent
the 95% confidence interval of the mean.
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