
ARTICLE

Received 23 Jan 2016 | Accepted 8 Jul 2016 | Published 23 Aug 2016

Urban heat islands in China enhanced by haze
pollution
Chang Cao1,2, Xuhui Lee1,2, Shoudong Liu1, Natalie Schultz2, Wei Xiao1,2, Mi Zhang1 & Lei Zhao1,2,3

The urban heat island (UHI), the phenomenon of higher temperatures in urban land than the

surrounding rural land, is commonly attributed to changes in biophysical properties of the

land surface associated with urbanization. Here we provide evidence for a long-held

hypothesis that the biogeochemical effect of urban aerosol or haze pollution is also a con-

tributor to the UHI. Our results are based on satellite observations and urban climate model

calculations. We find that a significant factor controlling the nighttime surface UHI across

China is the urban–rural difference in the haze pollution level. The average haze contribution

to the nighttime surface UHI is 0.7±0.3 K (mean±1 s.e.) for semi-arid cities, which is

stronger than that in the humid climate due to a stronger longwave radiative forcing of

coarser aerosols. Mitigation of haze pollution therefore provides a co-benefit of reducing heat

stress on urban residents.
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T
he urban heat island (UHI) represents one of the most
pronounced surface climate changes caused by human
activities1. The mechanism underlying the UHI formation

is generally thought to be biophysical in nature, arising from large
differences between rural and urban land in surface properties,
including sensible heat dissipation or convection efficiency,
evaporative cooling, sunlight reflection and artificial heating2,3.
The main contributors to the daytime UHI are reductions in
sensible heat convection efficiency and evaporative cooling in
urban land3–5. At night, the heat released from energy use and
from solar energy stored in buildings is a major biophysical factor
responsible for urban warming. The UHI increases the number
and the intensity of heat waves in cities, thus aggravating heat
stress on urban residents6.

Cities are also the dominant source of anthropogenic aerosols
having large impacts on the biogeochemistry of the atmo-
sphere7,8. The haze plume formed from urban aerosols alters
regional precipitation patterns outside the city9 and contri-
butes to radiative forcing on the global climate10. The haze
biogeochemical effect on the climate of urban land itself is,
however, still not well understood, in large part because of
the difficulty in disentangling the opposing effects aerosols have
on the surface shortwave and longwave radiation11. Aerosols
generally reduce the amount of shortwave radiation reaching the
ground surface, creating a cooling effect on the surface. However,
they are much more effective in absorbing and emitting radi-
ation than water vapour and greenhouse gases in the longwave
atmospheric window (wavelength range 8–12 mm) under specific
conditions, thus having the potential to increase the longwave
radiation energy received at the urban land surface12. The overall
effect depends on the initial particle size and size growth due to
ageing and absorption of water vapour13.

So far, a quantitative evaluation of the haze contribution to the
UHI has not been attempted. There are two difficulties. First,
standard urban land surface models14 do not include parame-
terizations for incoming shortwave and longwave radiation,
because these are properties of the atmosphere aloft, not
biophysical properties of the surface itself. Second, the aerosol
radiative forcing is not a prognostic variable in atmospheric data
assimilation models and in most climate models.

Cities in China are burdened with unprecedented levels of
aerosol pollution. Here we present an empirical analysis using
satellite observations to show that urban haze pollution is a
contributor that intensifies the UHI in China at night. In the
analysis, the surface UHI intensity DT is the difference in surface
temperature between the urban and the adjacent rural land3,
and haze pollution is measured by the aerosol optical depth
(AOD). We then use an urban climate model in conjunction
with an observation minus reanalysis (OMR) method for
aerosol longwave radiation enhancement, to quantify the haze
contribution to the surface UHI intensity in three climate zones
(humid, semi-humid and semi-arid) across China. We find that
haze pollution intensifies the nighttime UHI in China through an
increase in incoming longwave radiation. This warming effect is
greater in semi-arid cities compared with cities in humid and
semi-humid climates.

Results
Drivers of UHI spatial variations. We analysed the annual mean
DT measured by the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument on board of the Aqua satellite
from 2003 to 2013 for 39 cities across Mainland China (Fig. 1a).
Being a proxy for heat release from anthropogenic sources and
from solar energy stored in buildings, population is a predictor
frequently used to explain city-to-city variations in the nighttime

UHI intensity observed by satellites4,15–17 and by weather
stations2. Our results indicate that, in contrast to studies
reported for other regions of the world4,15, city population is
actually a poor predictor of the nighttime DT variations among
these cities (Fig. 1b). Shanghai, located in southeast China and the
largest city we analysed (population 14 million), shows a weak
surface UHI (1.5 K), whereas Hami, a small city (population
0.45 million) in northern China, exhibits one of the strongest
surface UHIs (5.0 K). The overall correlation between population
and nighttime DT is not statistically significant (P¼ 0.17).

Another unusual feature is the diurnal variations of the surface
UHI. The MODIS-derived nighttime DT (3.4±0.2 K, mean±1 s.e.)
is higher than the daytime value (2.1±0.3 K; Po0.001). The diurnal
contrast is especially striking for cities in the semi-arid climate, where
the mean nighttime DT is 4.0±0.4 K, but the daytime DT is only
0.3±0.5 K (Po0.001; Fig. 2c,f). The diurnal patterns in China differ
from those observed by satellites for North America18, Europe19,20,
South America20 and Oceania20 where the daytime surface UHI is
stronger than the nighttime UHI and where the UHI of semi-arid
cities is generally weak at night4,17,18. Our results are broadly
consistent with the UHI spatial pattern documented for China in a
previous study using a shorter MODIS time series21, although our
UHI intensity is generally greater, because we only used pure urban
and rural pixels to calculate DT.

One explanation for these unique surface UHI patterns is
related to haze pollution. We find that the spatial variations of the
annual mean nighttime DT are significantly correlated with the
difference in AOD between urban areas and the adjacent
rural land (Fig. 1c; DAOD, urban AOD minus rural AOD;
Po0.01). Significantly positive correlation is also found between
the summer nighttime DT and DAOD (Po0.01). Cities having a
thicker haze layer than the surrounding rural environment tend
to display a stronger UHI. We use DAOD, because DT is also a
perturbation signal in reference to the rural background. The
AOD itself is not a good predictor of the DT variations (P¼ 0.48).
Only after controlling for DAOD does DT show significant
dependence on population (Po0.01).

There is no evidence of haze enhancement on the daytime DT.
The correlation between the annual daytime DT and DAOD is poor
(P¼ 0.43; Fig. 3). Repeating the correlation analysis for the summer
season reveals similarly poor correlation (P¼ 0.50). Instead, the most
important factors explaining the daytime DT variations are
population, urban–rural difference in normalized difference in
vegetation index and cropland fraction of the rural background
(P-valueso0.001). Annual mean precipitation exerts a strong control
on the daytime DT in North America (Po0.001; ref. 3) but a weak
control in China (P¼ 0.06). This regional difference can be explained
by the fact that cropland is a more prominent non-urban land cover
in China than in North America. Irrigation is commonplace in
China, with 48% of the farmland receiving water from irrigation in
addition to water supplied by rain22. Domesticated plants supported
by irrigation water do not behave in the same way as natural
ecosystems in terms of surface energy exchanges. After excluding
cities whose adjacent rural area consists of 450% cropland pixels,
precipitation becomes a significant controlling factor
(linear correlation¼ 0.57, Po0.01, number of observations¼ 21).
The UHI dependence on precipitation and irrigation highlights
the important role of the rural background environment in
calculating DT.

Attribution of the haze effect. Figure 1c can be viewed as empi-
rical evidence supporting the long-held hypothesis that urban
haze pollution is a contributor that intensifies the UHI2. We now
make a quantitative attribution of the haze contribution to the
nighttime DT by combining climate model calculations with
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analysis of surface longwave radiation observations. The surface
radiation data are used in conjunction with the surface longwave
radiation calculated by an atmospheric data assimilation model,
to obtain the sensitivity of Lk to AOD, that is, the amount of
enhancement in Lk in response to a unit increase in AOD
(Methods). Here, Lk is the downward longwave radiation
received by the surface including emissions and scattering of
air molecules and aerosols. In the climate model, the urban
land is parameterized as a separate land unit at the subgrid level.
We force the model with an assimilated atmosphere and save the
surface energy balance variables of urban and non-urban subgrid
land units for offline UHI attribution4. The attribution method
separates the contributions of external radiative forcing, energy
redistribution via aerodynamic resistance-associated sensible heat
convection and energy redistribution via evaporation23.

In this framework, the aerosol effect is an external forcing
similar to anthropogenic heat release and to changes in the
surface shortwave radiation arising from the urban–rural surface
albedo difference, and can be expressed as,

DTð Þh¼
l0

1þ f
DL# ð1Þ

where (DT)h is haze contribution to the UHI intensity, l0

(E0.20 K m2 W� 1) is the local intrinsic climate sensitivity,

f is a dimensionless energy redistribution factor and DLk is the
urban–rural contrast in Lk calculated as the product of
the satellite-observed DAOD and the longwave radiation
sensitivity to AOD. Our AOD sensitivity values (Table 1) fall in
the range of those calculated with radiative transfer models24–27.
According to the observations of a ground-based aerosol remote-
sensing network28, the aerosol Ångström exponent is smaller in
the semi-arid northwest Chinese cities, indicating larger particle
sizes, than in cities in the humid central and eastern China. The
sensitivity for the semi-arid climate zone is much higher than for
the humid climate zone, confirming a stronger longwave radi-
ative forcing of coarser particles11,25. Our estimates of DLk, B1.1
and 8.0 W m� 2 for the cities in the humid and semi-arid
climate zone, respectively, are lower than those reported from
paired observations at urban and rural sites29,30, because we did
not consider the Lk enhancement caused by a warmer urban
boundary layer31 and emissions from urban canopy walls32. In
the model domain, Lk represents the downward longwave
radiation incident on a reference plane above the urban canopy,
which is the first model grid height.

We estimate that the haze contribution to the nighttime DT is
0.70±0.26 K (mean±1 s.e.) for the semi-arid cities and is small
for the other two groups of cities (Table 1). The larger (DT)h in
semi-arid climate is a result of less efficient energy redistribution
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Figure 1 | Nighttime MODIS surface urban heat island intensity in mainland China from 2003 to 2013. (a) Spatial variation of the annual-mean

nighttime MODIS-derived surface Urban Heat Island (UHI) across mainland China (K). (b) Surface UHI intensity relationship with population. (c) Surface

UHI dependence on urban–rural AOD difference. Red, blue and black circles indicate large (population 47 million), medium (3–7 million) and small cities

(o3 million), respectively. The two thick lines in a mark the boundary of three Köppen–Geiger climate zones (humid, semi-humid and semi-arid from south

to north). Lines in b,c are linear regression with regression statistics noted. Errors on the regression parameters are 95% confidence bounds.
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(smaller f-values due to larger aerodynamic resistance and Bowen
ratio; equation (5)) between the land and the atmosphere, a larger
urban–rural contrast in pollution level and a stronger longwave
radiative forcing of coarser aerosols.

In the semi-arid climate zone in China, both the urban and its
adjacent rural area are affected by coarse mineral particles
transported from the Taklimakan Desert and the Gobi Desert33.
In the urban environment, road fugitive dust, construction-
derived dust, and domestic heating and cooking are additional
sources of coarse mode aerosols, explaining why the ratio of PM10

to PM2.5 concentration is greater in the semi-arid cities in
Northwest China than in the humid cities in South China34–36.
The urban–rural AOD difference observed here appears to result
from these urban anthropogenic sources.

The haze contribution to the daytime DT is uncertain because
of the opposing effects aerosols have on the surface shortwave
and longwave radiation11, but the lack of correlation between the
daytime DT and DAOD (Fig. 3) suggests that it may be negligible.
This inference is consistent with the model results. The daytime
DT determined online by the Community Land Model (CLM)
model, denoted as CLM in Fig. 2, is in good agreement with the
MODIS-derived values (denoted as MODIS) for the cities in
humid and semi-humid climates (Fig. 2a,b). For the cities in
semi-arid climate, the model online result overestimates the
observation, but the offline diagnostic calculation (denoted as
Calculated), which is the sum of all the terms in equation (2),
shows a good agreement (Fig. 2c). The overall agreement leaves

little room for an additional contribution due to the haze effect,
implying that the relative reduction of the shortwave radiation in
the city in reference to the rural background is roughly equal to
the relative enhancement of the longwave radiation. This
offsetting effect of aerosols on radiation has been reported
previously by ref. 37 and the year-long observations at an urban–
rural site pair support this interpretation29. Comparison of the
model results and the MODIS observation for the summer also
reveals very good agreement for the daytime.

According to the attribution diagnostics, the main contributor
to the daytime UHI in the humid climate is the reduction in
sensible heat convection efficiency of the urban land, not a
reduction in evaporation. In the semi-arid climate, the role of
convection is reversed, contributing to a cooling signal. These
results are in agreement with those obtained previously for cities
in North America4.

In contrast to the daytime results, the modelled nighttime DT is
too low in comparison with the MODIS observations (Fig. 2d–f),
even though the same model is able to reproduce the observations
in North America. The atmosphere in the model domain is free of
haze pollution. With the inclusion of the haze contributions
calculated offline (Table 1), the modeled DT is still biased low.
One reason for the low bias is that the model scheme does not
have a complete accounting of all sources of anthropogenic heat
release in the urban land38. The anthropogenic heat flux is an
important contributor to the nighttime UHI21. Another possi-
bility is that equation (1) has omitted a dynamic mechanism
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associated with the haze pollution. Aerosols are known to warm
the atmosphere12,39, potentially making the boundary layer air
above the urban land more stable than that above the rural land
and thus reducing the efficiency of energy dissipation from the
urban surface to the atmosphere. The end result is an amplified
UHI intensity. It appears that this stability mechanism is espe-
cially strong in the humid climate, as suggested by the large
model bias error (Fig. 2d), although a definite answer will require
an improved anthropogenic heat parameterization for China.

Our study implies that abatement of haze pollution has a
co-benefit of reducing heat stress on urban residents. The UHI
intensity is a perturbation signal in reference to the rural
background temperature. A complete assessment of the haze
effect must recognize that the rural atmosphere is also changing.
The MODIS observation indicates that the rural AOD in
China is 0.20 and 0.53, greater than that in North America in
the semi-arid and the humid climate zones, respectively. The data
in Table 1 suggest that the rural land in China may be receiving
B15 W m� 2 more longwave radiation energy at night than
under haze-free conditions. Our subgrid energy balance analysis
is not suited for quantifying the impact of the rural background
change, because the change signal is regional in scale. The
nighttime temperature in China increased at 0.47 K per decade
from 1979 to 2012 (ref. 40), which is roughly twice the global

mean temperature trend for the same time period41. We hypo-
thesize that haze pollution has contributed to the accelerated
warming in China. If the hypothesis is proved valid, pollution
abatement should also relieve heat stress on rural populations.

Methods
Satellite data. We selected 39 cities in mainland China with the consideration that
there is at least one city for each province (Supplementary Table 1). More cities
were added for the three largest provinces (Xinjiang, Qinghai and Inner Mongolia),
to ensure even distribution across the country. In our selection, cities located in
mountainous regions were avoided. Of the selected cities, 19 are in humid
climate, 9 in semi-humid climate and 11 in semi-arid climate, according to the
Köppen–Geiger climate classification42.

We used the (MODIS) Aqua land surface temperature (LST) product
(MYD11A2), to retrieve paired urban and rural LST. The MYD11A2 product
comprises 8-day clear-sky LST observations at 13:30 and 1:30 local time, with a
1 km spatial resolution. The study period is from 2003 to 2013. A set of 3� 3 pixels
was chosen from the urban core, except for three small cities for which we were
only able to obtain one to three pure urban pixels. The surrounding rural areas
were represented by up to four 3� 3 pixel patches at the four sides of the city, but
mountain and water pixels were avoided. The selected urban–rural pixel pairs do
not differ by, on average, 4100 m in elevation and by 40.1� in latitude.

Three features of the MYD11A2 product make it particularly suitable for the
UHI detection. First, a MODIS cloud mask (MYD35) has been applied to filter out
cloudy conditions; thus, cloud interferences are avoided. Second, a generalized
split-window algorithm using two longwave bands in the atmospheric window is
used to correct atmospheric water vapour and haze effects, and to reduce the
sensitivity to errors in the surface emissivity43. The average bias (MODIS LST
minus ground-based measurement of LST) is � 0.15±0.73 K in conditions of low
haze pollution44 (mean±1 s.d., number of sites n¼ 6) and is not different
statistically (two-sample t-test, P¼ 0.98) from the mean bias of � 0.17±1.66 K
(n¼ 4) in conditions of high haze pollution45. Third, the brightness temperature
has been corrected for surface emissivity to obtain the true LST. The surface
emissivity data, developed by a MODIS science team46, delineate the land surface
into 17 categories (including a category for urban) and account for the bidirectional
radiation distribution factor of each category. The impact of emissivity on the
surface temperature retrieval has been discussed elsewhere43,46.

Land cover change over time can complicate satellite UHI observations47. Steps
were taken to ensure that the selected urban and rural pixels stayed as urban and
rural throughout the duration of the study. The selected pixels were first validated
by the MODIS land cover product (MCD12Q1, resolution 500 m) with the IGBP
classification for year 2010 and then cross-checked against Google Earth. As no
abandonment of urban land has occurred in these Chinese cities, these rural pixels
should be rural in the years before 2010. The urban pixels were from the urban
core; hence, they should be urban in the prior years as well as in the future years.
To address the question of whether the pixels designated as rural in 2010 were
converted to urban in the later years, we compared our selected rural pixels for
each city against the MODIS classification for year 2013, the last year of our study
period. Only the rural pixels for eight cities experienced some change from 2010 to
2013, but the change is small: o5% of the rural pixel selected based on the 2010
classification was converted to the urban class in 2013.

The MODIS Level 2 aerosol product (MYD04_3K) was used in this study.
Compared with the nominal 10 km aerosol product, this product has a finer resolution
of 3 km and is more suitable for determining urban and rural aerosol characteristics
contrast. The AOD values were determined with the dark target algorithm48. Only
high-quality (quality flag¼ 3) data were used. For each pair of city and its adjacent
rural area, we calculated the averaged AOD from 2003 to 2013 and subtracted the rural
mean AOD from that of the urban area to obtain DAOD.

The community land model and model simulations. The model we used is the
CLM (version 4.0) of the NCAR’s Community Earth System Model (CESM) sys-
tem49. Each gridcell in the CLM is configured with five land units: glacier, wetland,
vegetated, lake and urban50. In this study, the urban and vegetated land units in the
same gridcell were used to represent an urban–rural site pair. The model was
driven by the atmospheric forcing data described in ref. 51. The simulation period

Table 1 | Estimate of the haze contribution to the night-time UHI for three climate zones.

Humid Semi-humid Semi-arid

AOD sensitivity (W m� 2 per unit AOD) 31.9±3.0 23.8±4.6 61.8±4.9
DAOD 0.033±0.021 0.033±0.020 0.13±0.025
f 3.0±1.8 1.7±0.9 1.3±0.8
(DT)h (K) 0.05±0.12 0.06±0.10 0.70±0.26

AOD, aerosol optical depth; UHI, urban heat island.
Error bounds are±1 s.e.
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began in 1972 and ended in 2004 after a 60-year spin-up. The model resolution
(0.23� longitude� 0.31� latitude) was the finest allowed by this CESM version.
Three small cities (Xining, Lhasa and Delhi) were ignored by the model, because
their areal extent does not exceed 0.1% of the gridcell, a minimum area threshold
to evoke the urban parameterization. To match the overpass time and the sky
condition of the MODIS LST product, we only analysed model outputs at 1:00 and
13:00 local time, and under clear sky conditions (clearness index 40.5).

Offline attribution of UHIs. We adopted the attribution method first developed
for the investigation of local deforestation effects23 and later extended to the study
of the surface UHI of North American cities4. Briefly, the CLM subgrid model
outputs were analysed in a surface energy balance framework that separates the
contributions to the urban–rural temperature difference according to five
biophysical drivers: net shortwave radiation or surface albedo change, change in
sensible heat dissipation efficiency, evaporation reduction, heat storage change and
anthropogenic heat release. Their contributions to DT are expressed as:

DT ¼ l0

1þ f
DR�n þ

� l0

1þ fð Þ2
ðR�n �QsþQAHÞDf1 þ

� l0

1þ fð Þ2
ðR�n �QsþQAHÞDf2

þ � l0

1þ f
DQs þ

l0

1þ f
DQAH

ð2Þ
where f is an energy redistribution factor, which is a function of Bowen ratio and
the aerodynamic resistance (equation (3) below), l0 is a local climate sensitivity
parameter (l0¼ 1/4sT3E0.2 K W� 1 m2, where s is the Stephan–Boltzmann
constant) and the terms on the right side of the equation represent contribution
associated with difference in the net apparent radiation (term 1), sensible heat
convection efficiency (term 2), evaporation (term 3), heat storage (term 4) and
anthropogenic heat flux (term 5) between the urban and the rural area of the same
grid. The change terms Df1 and Df2 are expressed as:

Df1 ¼
� l0rCp

ra
1þ 1

b

� �
Dra

ra
ð3Þ

Df2 ¼
� l0rCp

ra

Db
b2 ð4Þ

The surface UHI intensity was computed in two different ways. First, DT was
calculated online by CLM as the surface temperature difference between the urban
and the vegetated land unit in the same gridcell (the green bars in Fig. 2). In the
second method, DT was computed as the sum of the individual contributions in the
offline analysis according to equation (2) (the blue bars in Fig. 2).

The atmosphere in CESM is free of haze pollution, but the pollution effect can
be quantified using the offline diagnostics according to equation (1). The most
relevant diagnostic variable is the energy redistribution factor, f, which describes
the efficiency of energy redistribution between the surface and the atmosphere, and
is defined as,

f ¼ rCp

4rasT3
s
ð1þ 1

b
Þ ð5Þ

where r is air density, Cp is specific heat of air at constant pressure, ra is
aerodynamic resistance to sensible heat, s is the Stephan–Boltzmann constant, Ts is
the surface temperature and b is Bowen ratio calculated as the ratio of the subgrid
sensible heat to latent heat flux. These diagnostic variables are provided by the
CLM model for every model grid. In a model grid where the f-value is higher, the
surface UHI intensity will probably be lower, because energy is dissipated more
efficiently from the surface to the atmosphere.

To estimate the haze enhancement on the surface UHI, we need to quantify the
difference in the incoming longwave radiation between the urban and the rural
area (DLk). We first determined the sensitivity of Lk to AOD, that is, the amount of
enhancement in Lk in response to a unit increase in AOD, using the OMR
method52. The reanalysis longwave radiation data were provided by the Modern-
Era Retrospective Analysis for Research and Application. The observational data
came from three ground sites in the ChinaFLUX network53 representing the three
climate zones (Yongfeng, 32.21� N, 118.67� E; Luancheng, 37.88� N, 114.68� E;
Xilinguole 43.53� N, 116.66� E). Yongfeng (Jiangsu Province) and Luancheng
(Hebei Province) are cropland sites and Xilinguole is a grassland site in Inner
Mongolia. As Modern-Era Retrospective Analysis for Research and Application
does not consider haze pollution but the observation was impacted by haze, some
of the difference between the observed and reanalysed Lk can be considered to
result from haze pollution. In this study, the regression of the OMR Lk against the
MODIS AOD is given as [OMR Lk]¼ aþ b� [AOD], where the intercept a
represents the reanalysis model bias54 and the slope parameter b was taken as the
sensitivity of Lk to AOD (Table 1). Next, the urban Lk enhancement was calculated
as the product of the AOD sensitivity and the observed AOD difference between
the paired urban–rural pixels. Finally, the haze contribution to the UHI was
calculated according to equation (1). The s.e. of f and DLk were calculated after
averaging the values for cities belonging to the same climate zone. Uncertainty on
(DT)h was determined with a Monte Carlo procedure using 100,000 realizations
and a Gaussian error distribution for all input variables.

Data availability. All the satellite data used in this study can be downloaded on
the MODIS product website (https://lpdaac.usgs.gov/dataset_discovery/modis/
modis_products_table/myd11a2). Other relevant data in this study are available
from the authors.
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depicted by world maps of the Köppen-Geiger climate classification. Meteorol.
Z. 19, 135–141 (2010).

43. Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving
land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34,
892–905 (1996).

44. Wang, K. & Liang, S. Evaluation of ASTER and MODIS land surface
temperature and emissivity products using long-term surface longwave
radiation observations at SURFRAD sites. Remote Sens. Environ. 113,
1556–1565 (2009).

45. Yu, W., Ma, M., Wang, X., Song, Y. & Tan, J. Validation of MODIS land surface
temperature products using ground measurements in the Heihe River Basin, China.
in: Remote sensing for agriculture, ecosystems and hydrology. (eds Neale, C. et al.)
8174, 817423 (Proc. of SPIE, 2011).

46. Snyder, W. C., Wan, Z., Zhang, Y. & Feng, Y. Z. Classification-based emissivity
for land surface temperature measurement from space. Int. J. Remote Sens. 19,
2753–2774 (1998).

47. Zhao, S., Zhou, D. & Liu, S. Data concurrency is required for estimating urban
heat island intensity. Environ. Pollut. 208, 118–124 (2016).

48. Remer, L. A., Mattoo, S., Levy, R. C. & Munchak, L. A. MODIS 3km aerosol
product: algorithm and global perspective. Atmos. Meas. Tech. 6, 1829–1844
(2013).

49. Hurrell, J. W. et al. The community earth system model: a framework for
collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

50. Oleson, K. W., Bonan, G. B., Feddema, J. & Jackson, T. An examination of
urban heat island characteristics in a global climate model. Int. J. Climatol. 31,
1848–1865 (2011).

51. Qian, T., Dai, A., Trenberth, K. E. & Oleson, K. W. Simulation of global land
surface conditions from 1948 to 2004. Part I: forcing data and evaluations.
J. Hydrometeorol. 7, 953–975 (2006).

52. Kalnay, E. & Cai, M. Impact of urbanization and land-use change on climate.
Nature 423, 528–531 (2003).

53. Yu, G. R. et al. Overview of ChinaFLUX and evaluation of its eddy covariance
measurement. Agric. For. Meteorol. 137, 125–137 (2006).

54. Stephens, G. et al. The global character of the flux of downward longwave
radiation. J. Climatol. 25, 2329–2340 (2012).

Acknowledgements
This research was supported by the National Science Foundation of China (grants
41475141 and 41575147), the Priority Academic Program Development of Jiangsu
Higher Education Institutions (grant PAOD), the Ministry of Education of China (grant
PCSIRT), a Visiting Fellowship from China Scholarship Council (to C.C.), a Yale
University Graduate Fellowship (to N.S.) and a Princeton STEP Post-Doctoral Fellow-
ship (to L.Z.). We acknowledge high-performance computing support from Yellowstone
(ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems
Laboratory, sponsored by the U.S. National Science Foundation.

Author contributions
X.L. designed the research. L.Z. carried out the model simulation. C.C. performed the
data analysis. S.L., N.S. and W.X. contributed ideas to the data analysis. M.Z. contributed
the surface radiation data. C.C. and X.L. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Cao, C. et al. Urban heat islands in China enhanced by haze
pollution. Nat. Commun. 7:12509 doi: 10.1038/ncomms12509 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12509 ARTICLE

NATURE COMMUNICATIONS | 7:12509 | DOI: 10.1038/ncomms12509 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Drivers of UHI spatial variations
	Attribution of the haze effect

	Figure™1Nighttime MODIS surface urban heat island intensity in mainland China from 2003 to 2013.(a) Spatial variation of the annual-mean nighttime MODIS-derived surface Urban Heat Island (UHI) across mainland China (K). (b) Surface UHI intensity relations
	Figure™2Urban Heat Island attribution and comparison with satellite observation.Daytime Urban Heat Island (UHI) attribution in (a) humid region, (b) semi-humid region and (c) semi-arid region. Nighttime UHI attribution in (d) humid region, (e) semi-humid 
	Methods
	Satellite data
	The community land model and model simulations

	Table 1 
	Figure™3Variance of the annual mean daytime and nighttime DeltaT explained by different biophysical drivers.DeltaAOD, difference in aerosol optical depth; DeltaNDVI, urban-rural difference in normalized difference in vegetation index; P, population; Delta
	Offline attribution of UHIs
	Data availability

	GrimmondS.Urbanization and global environmental change: local effects of urban warmingGeogr. J.17383882007OkeT. R.Boundary Layer ClimatesRoutledge2002VoogtJ. A.OkeT. R.Thermal remote sensing of urban climatesRemote Sens. Environ.863703842013ZhaoL.LeeX.Smi
	This research was supported by the National Science Foundation of China (grants 41475141 and 41575147), the Priority Academic Program Development of Jiangsu Higher Education Institutions (grant PAOD), the Ministry of Education of China (grant PCSIRT), a V
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




