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Abstract: Surface albedo is a critical parameter in surface energy balance, and albedo change is an
important driver of changes in local climate. In this study, we developed a workflow for landscape albedo
estimation using images acquired with a consumer-grade camera on board unmanned aerial vehicles
(UAVs). Flight experiments were conducted at two sites in Connecticut, USA and the UAV-derived
albedo was compared with the albedo obtained from a Landsat image acquired at about the same time as
the UAV experiments. We find that the UAV estimate of the visibleband albedo of an urban playground
(0.037 ± 0.063, mean ± standard deviation of pixel values) under clear sky conditions agrees reasonably
well with the estimates based on the Landsat image (0.047 ± 0.012). However, because the cameras
could only measure reflectance in three visible bands (blue, green, and red), the agreement is poor for
shortwave albedo. We suggest that the deployment of a camera that is capable of detecting reflectance at
a near-infrared waveband should improve the accuracy of the shortwave albedo estimation.

Keywords: Unmanned Aerial Vehicle (UAV); albedo; landscape; consumer-grade camera;
radiometric calibration

1. Introduction

Surface albedo is a key parameter in the surface energy balance, and it therefore plays an important
role in land–climate interactions. As a key biophysical property of land ecosystems, surface albedo
can change throughout the season, due to changes in the vegetation morphology, and it can also be
affected by sky conditions [1]. Quantification of the surface albedo at the landscape scale is still subject
to many sources of uncertainty, especially over urban land [1,2].

Satellite remote sensing has been widely used for the determination of land surface albedo [3–6].
An advantage of satellite monitoring is that it provides global coverage. New satellites can provide
albedo measurements at reasonably high frequencies (2–3 days in the best case for Sentinel 2)
and spatial resolutions (pixel size 10 m in the case of Sentinel 2, and several cm in the case of
DigitalGlobe) to provide useful information for studies on ecosystem (tens of meters) to landscape
(several kilometers to tens of kilometers) scales. However, all satellite measurements are biased
towards cloud-free sky conditions. In urban landscapes with heavy haze pollution, retrieval of the true
surface albedo from satellite imageries must remove signal contamination caused by particle scattering.
Lightweight unmanned aerial vehicles (UAVs) as an alternative for albedo monitoring may be able
to overcome these limitations. UAVs can cover areas ranging from 0.01 km2 to 100 km2, depending
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on battery life and type of UAV [7]. They provide measurements at sub-decimeter spatial resolutions,
and they can be used to obtain data under both clear sky and cloudy conditions [8,9]. UAV experiments
can be conducted at almost any time, and at any locations [10–12]. Furthermore, the labor and financial
expense of UAVs are much lower than those of aircraft [13]. Finally, UAVs can measure albedos at
locations that are not accessible by ground-based instruments, such as steep rooftops in cities.

In a typical UAV experiment, consumer-grade digital cameras are utilized as multispectral sensors,
similar to their counterparts on board satellites, to measure the spectral radiance reflected by ground
targets, typically in the red, green, and blue wavebands and occasionally with modification to include
a near-infrared (NIR) waveband. These at-camera radiance data are stored as digital numbers (DN),
usually with an 8-bit resolution ranging from 0 to 255, to represent the brightness of the targeted object [14].
Vegetation indices derived from the spectral information [15] allow for the monitoring of vegetation growth
status [16–18], and the estimation of crop biomass [19]. Because the UAV flies below cloud layers, cloud
interference is no longer a problem. Also, because of the low flight altitude in typical UAV missions,
the at-sensor radiance is a direct measure of the actual surface reflected radiance, but this is not true for
satellite monitoring (Even with UAVs flying at higher flight altitudes, atmospheric interference is still much
less severe than with satellite monitoring). Alternatively, a UAV can be deployed as a platform to carry
pyranometers to measure albedo. For example, Levy et al. measured surface albedo over vegetation using
a ground-based pyranometer paired with a pyranometer mounted on a quadcopter [20].

Although increasingly being used to produce image mosaics and to construct 3D point clouds
of surface features, consumer-grade cameras on board of UAVs have rarely been used to study land
surface albedo. The land surface albedo here refers to blue sky albedo, which means that it is the albedo
under ambient illumination conditions. By using a Finnish Geodetic Institute Field Goniospectrometer,
which includes a fisheye camera on a fixed-wing drone, Hakala et al. [21] estimated the bidirectional
reflectance distribution function (BRDF) of a snow surface. Ryan et al. [22] measured snow albedo in
the Arctic region with pyranometers on board a fixed-wing UAV. Since consumer-grade digital cameras
are not calibrated for radiance measurements, many internal factors, such as Gamma correction, color
filter array interpolation (CFA), and the vignetting effect, can contribute to radiometric instability [23].
Gamma correction is a nonlinear transformation of the electro-photo signal received by the detector at
the focal plane of the camera to a DN output. The DN values and their corresponding raw data are
not exactly 1-to-1 matched [22]. Because there is only one band value (e.g., green) for each pixel on a
charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS), the other band
values (i.e., red and blue) have to be estimated by using the CFA interpolation method. The vignetting
effect refers to the phenomenon whereby objects farther away from the image center will appear
darker. All of these factors must be accounted for if the DN value is to be converted to true reflectance.
Some researchers argue that using raw images from the camera instead of the compressed JEPG or
TIFF images can avoid the Gamma correction and CFA [22]. Applying a vignetting mask on the images
can effectively alleviate the vignetting effect [24].

Determination of the albedo with UAV data consists of three steps. First, accurate albedo
determination requires radiometric calibration of the camera’s DN values, to represent physically
meaningful surface reflectance. Currently, radiometric calibration methods fall into two categories:
absolute and relative. In absolute calibration, the calibration function that relates the DN value to
the reflectance is based on the measurement of an accurately known, uniform radiance field [25].
Relative calibration is especially needed for sensors having more than one detector per band.
By normalizing the outputs of different detectors, a uniform response can be obtained [25–28].

The next step after the radiometric correction involves the conversion of the spectral reflectance
at the camera viewing angle to the hemispheric reflectance or spectral albedo [29,30], ideally using
a BRDF of the target. Because the determination of the BRDF requires measurements at multiple
illumination and viewing angles, a process that requires elaborate preparation and post-processing [21],
it is commonly assumed that all the objects are Lambertian [22]. The albedo values that we retrieved in
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this study should be considered as “Lambertian-equivalent albedos”. Without the consideration of the
BRDF effect, spectral reflectance is essentially the same as the spectral albedo [29,30].

The third step is to convert the spectral albedo of discrete bands to the broadband albedo, that
is, the total reflectance in all directions in either the visible band (wavelength 380 nm to 760 nm) or
the shortwave band (250 nm to 2500 nm). Wang et al. [30] have established an empirical method to
convert the spectral albedo measured by Landsat 8 to the broadband albedo. Here, we propose that
the same conversion equation can be applied to UAV albedo estimation.

The objective of this study is to develop a UAV method for determining the landscape albedo.
The method was tested at two sites typical of urban landscapes, and consisting of impervious and
vegetation surfaces. The visible and shortwave band albedo derived from our method were compared
with those of Landsat 8. This method can save labor cost, and it can be applied to the landscape albedo
estimation where direct field measurement may be difficult.

2. Materials and Methods

2.1. UAV Experiments

We conducted two UAV flights along predefined routes (Table 1). One took place in a playground
on the Yale University campus (41.317◦N, 72.928◦W) on 30 September 2015, and the other in Brooksvale
Recreational Park, in Hamden, Connecticut, USA (41.453◦N, 72.918◦W) on 9 October 2015. The sky
condition was clear on 30 September, 2015, and overcast on 9 October, 2015. For the Yale Playground,
a quad-rotor drone equipped with a GARMIN VIRB-X digital camera was used for the image
acquisition (Figure 1a). A fixed-wing drone designed and assembled by CielMap [31] equipped
with a Sony NEX-5N camera was used in the second experiment (Figure 1b). Both cameras had fixed
aperture and automatic shutter speed. The spectral sensitivity of the Sony NEX 5N camera can be
found in Ryan et al. [22]. However, the spectral sensitivity of GARMIN VIRB-X was not released
by the manufacturer. Although Ryan et al. [22] used raw images for retrieving ice sheet reflectance,
the study by Lebourgeois [23] showed little improvement from using the raw images over JPEG images.
They demonstrated that JPEG and RAW imagery data have a linear relationship for the range of DN
values needed for crop monitoring. In this study, we used the compressed JPEG images.
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Table 1. Information about the study sites and the drone experiments. Here, image overlap is defined
as the number of photos that were sampled in the same pixel. For example, an overlap of nine means
that each pixel is seen by at least nine photos.

Brooksvale Recreation Park Yale Playground

Location 41.453◦N 72.918◦W 41.317◦N 72.928◦W
Drone experiment date 9 October 2015 30 September 2015

Drone flight time 10:00 to 10:30 14:30 to 15:00
Sky conditions Overcast Clear sky
Flight duration 30 min 20 min

Flight altitude (m) 120 90
Camera Sony NEX-5N GARMIN VIRB-X

UAV platform Fixed-wing Quad-rotor
Forward overlap 80% 80%

Side overlap 60% 60%
Image overlap

Area (km2)
>9

0.065
>9

0.014

2.2. Image Processing

Agisoft Photoscan Professional Pro software 1.1.0 (Agisoft LCC, St. Petersburg, Russia)
was used to generate ortho-mosaicked images for both experiments. The software has built-in
structure-from-motion (SfM) and other multiview stereo algorithms. The general workflow involves
aligning photos, placing ground control points, building dense points, building textures, generating
orthomosaics and the digital elevation model. All of the photos underwent image quality estimation in
Photoscan, and those with quality flag values under 0.5 were rejected from processing. The vignetting
effect can be avoided to some degree; due to the mosaic mode of texture generation in Photoscanwe
chose [32]. Instead of calculating the average value of all pixels from individual photos that overlapped
on the same point, this mosaic mode only uses the value where the pixel in interest is located within
the shortest distance from the image center [32].

The Environment for Visualizing Images software (ENVI, version 5.1, Harris Corporation,
Melbourne, FL, USA) was utilized to conduct a classification of the mosaicked images, in order
to distinguish non-vegetation and vegetation pixel types. The supervised classification scheme used
for the Brooksvale Park was maximum likelihood, and for the Yale Playground, it was the spectral angle
mapper. The Yale Playground was severely affected by shadows of trees and buildings because the solar
elevation angle was low at the time of the experiment. The spectral angle mapper directly compares
the spectra of images to known spectra, and creates vectors in order to calculate the spectral angle
between them [33]. Therefore, this classifier is not sensitive to illumination conditions. The mosaicked
images (Figure 2) were then used for the determination of landscape albedo.
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Figure 2. Mosaicked images of Brooksvale Park (a) and Yale Playground (b). The mosaicked images
have a resolution of 4 cm per pixel.

2.3. Spectrometer Measurement of Ground Targets

A high resolution spectrometer (FieldSpec Pro FR, Malvern Panalyical Ltd., Malvern, UK) was
used to record the reflectance spectra of ground targets, including non-vegetative features and ground
vegetation. Before the measurement of each ground target, the spectrometer was calibrated using a
white reference disc (Spectralon, Labsphere). The spectrometer field experiments were carried out
under both overcast and clear sky conditions at each field site (Table 2). The UAV and spectrometer
field experiments were not conducted on the same day, as the former were done in the autumn
of 2015 and the latter in the spring of 2016, and therefore the vegetation conditions were different.
However, the solar elevation angle did not differ much in the case of the Yale Playground. A pistol grip
was used to measure the single point of each ground target five times. A typical standard deviation
of the reflectance in the visible bands for each ground target was less than 0.02. The non-vegetation
ground targets included a wide range of brightness, from black dustbins to white-paint markings
(Figure S1). Vegetation ground targets were grass at both sites. The Lambertian assumption was
adopted so that the spectral reflectance measured by the spectrometer was taken as the spectral albedo.
The wavelength ranges for the red, green, and blue bands in this study were defined as 620–670 nm,
540–560 nm and 460–480 nm, respectively, coinciding with the three color wavebands of the cameras.

Table 2. Dates of the spectrometer field experiments.

Sky Conditions Brooksvale Park Yale Playground

Clear 28 April 2016 10:00 19 April 2016 14:30
Overcast 7 March 2016 10:00 28 April 2016 14:30
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We used the spectrometer measurements for three purposes. The first purpose was to calibrate the
mosaicked image. A calibration curve for each of the three wavebands was established by comparing
the measured spectral albedo with the DN value of the same ground target identified in the mosaicked
image. These curves were then used to convert the DN values of all the image pixels to a spectral albedo.

The second purpose was to determine the broadband (visible and shortwave) albedos of these
ground targets. We used the Simple Model of Atmospheric Radiative Transfer of Sunshine program
(SMART, version 2.9.5) developed by the National Renewable Energy Laboratory, United States of America
Department of Energy [34], to simulate the spectral irradiance of solar radiation. In the SMART simulation,
the U.S. standard atmosphere was chosen as the reference atmosphere, aerosol model was set as urban
type, and the sky condition was either clear or overcast. The parameters used for the SMART calculations
are given in Supplementary Table S1. The data from the SMART and spectrometer had a 1 nm spectral
resolution. The broadband albedo (visible or shortwave) was computed as:

α∗ =
∑b

a ρ(λ)I(λ)

∑b
a I(λ)

(1)

where α∗ is broadband albedo of the ground target, I(λ) is the solar spectral irradiance, λ is wavelength,
ρ(λ) is the spectral reflectance recorded by the spectrometer at wavelength λ, and a and b denote the
range of the waveband. For the visible band, a and b are 400 nm and 760 nm, respectively, and for the
shortwave, they are 400 nm and 1750 nm, respectively. These albedo values were then compared with
the albedo values estimated with the satellite algorithm. It should be noticed that our shortwave band
(400–1750 nm), which represents the effective range of the spectrometer measurement, is narrower
than the typical shortwave definition of 400–2500 nm, and therefore, our shortwave albedo that we
derived here may lose a small contribution from energy at 1750–2500 nm.

The third purpose was to determine a factor for converting the visible band albedo to the
shortwave band albedo. This conversion factor is needed in order to obtain an estimate of the
landscape shortwave albedo from the drone mosaicked image, because the drone image consisted
of only three visible bands. From the visible and shortwave band albedos for the ground targets,
we determined a mean ratio of shortwave to visible band albedo for non-vegetation features, and a
mean ratio for the vegetation features.

2.4. Landscape Albedo Estimation

Figure 3 depicts the workflow of albedo estimation at the landscape scale. (i) A mosaicked image of
the landscape was produced from the drone photographs using the Agisoft Photoscan software. (ii) The
calibration functions based on the spectrometer measurement were used to convert the DN value of each
pixel in the mosaicked image to spectral albedo in the three wavebands (red, green, and blue). (iii) The
Landsat 8 visible band albedo algorithm (Equation (2) below) was validated with the visible band albedo of
the ground targets. The validated Landsat 8 conversion algorithm was then used to determine the visible
band albedo of each pixel in the whole image. The Landsat8 algorithm is given as [30]:

αvis/Landsat8 = 0.5621α2 + 0.1479α3 + 0.2512α4 − 0.0015 (2)

Here, α2, α3, and α4 represent blue, green, and red spectral albedos calculated from (ii), respectively.
(iv) Pixels in the mosaicked image was classified as vegetation and non-vegetation types. (v) The
shortwave albedo of the vegetation and non-vegetation pixels was obtained by multiplying their
visible band albedo with the ratio of shortwave to visible band albedo obtained with the spectrometer
for the vegetation ground targets and for the non-vegetation targets, respectively. (vi) The landscape
shortwave albedo was calculated as the mean value of the pixels in the drone image mosaic. The visible
and shortwave band albedo values were given as mean ± 1 standard deviation of all the pixel albedo
values in the mosaic.
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2.5. Retrieval of Landscape Albedo from the Landsat Satellite

Landsat 8 Operational Land Imager (OLI) surface reflectance products were used as a reference
for evaluating the landscape visible and shortwave band albedo obtained with the drone images.
These products have been atmospherically corrected from the Landsat 8 top of atmosphere reflectance
by using the second simulation of the satellite signal in the Solar Spectrum Vectorial model [35].
They performed better than Landsat 5/7 products, by taking advantage of the new OLI coastal
aerosol band (0.433–0.450 µm), which is beneficial for detecting aerosol properties [35]. The Landsat
image was acquired on 6 October 2015 under clear sky condition and the WRS_PATH and Row
were 13 and 31 respectively. The corresponding surface reflectance product can be ordered from
https://earthexplorer.usgs.gov/. We used 72 pixels on the image that corresponded roughly to the
drone image of the Brooksvale Park, and 16 pixels for the Yale Playground. The Landsat camera has a
relatively small field of view (15◦), and therefore, the BRDF correction is not considered in its surface
reflectance product [36]. We used the Landsat 8 snow-free visible (Equation (2)) and shortwave band
albedo coefficients (Equation (3)) to obtain the Landsat 8 validation values [30].

αSW/Landsat8 = 0.2453α2 + 0.0508α3 + 0.1804α4 + 0.3081α5 + 0.1332α6 + 0.0521α7 + 0.0011 (3)

Here, α2, α3, α4, α5, α6, and α4 represent the spectral surface reflectances of six bands of
Landsat 8 (450–510 nm, 530–590 nm, 640–670 nm, 850–880 nm, 1570–1650 nm, and 2110–2290 nm,
respectively) [37]. Although it is possible to use the information retrieved from MODIS to make BRDF
corrections to the Landsat albedo [29,30], this correction was not performed here, to be consistent with
the drone methodology, which does not account for BRDF behaviors either.

3. Results

3.1. Relationship Between the DN Values and Spectral Reflectance

A desirable fitting function of the DN values and the spectral reflectance should meet two
requirements: (1) when the reflectance reaches zero, the DN value should also reach zero, and (2) the
relationship should be nonlinear because of gamma correction. In the study by Lebourgeois et al. [23],

https://earthexplorer.usgs.gov/
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the relationship between the DN values in the raw and the compressed image format is logarithmic.
Inspired by their result, we adopted the following fitting function for spectral calibration:

y = a [ln(x + 1)] b (4)

where x is the DN value of ground targets, y is spectral reflectance, and a and b are fitting coefficients.
Equation (4) guarantees that the pixel reflectance is always positive.

This function produced a robust regression fit to the spectral reflectance of the ground targets
observed in the Brooksvale Park (Figure 4) and the Yale Playground (Figure 5). The coefficients
of determination (R2) for Brooksvale Park were greater than 0.60 (p < 0.05) and those for the Yale
Playground were greater than 0.40 (p < 0.05). For Brooksvale Park, all of the data points followed
the fitting line closely. For the Yale Playground, there were two outliers: a yellow pavement mark,
and a red brick (Figure 5). Such discrepancy may be indicative that these ground targets were not
Lambertian reflectors. The view angle of the spectrometer was nadir. If the drone was relatively stable
during the flight, the camera was levelled, and if only central pixels were used to form the mosaic,
the camera angle would also be perfectly nadir. However, because the mosaic had pixels from other
parts of the original photos, and because the camera position could deviate from the vertical, the actual
camera angle viewing these targets may differ from the nadir. For this reason, a BRDF is required to
correct for the non-Lamberstian behaviors, which is beyond the scope of this study.
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3.2. Landscape Visible-Band and Shortwave Albedo

Applying the calibration functions (Figure 4d–f) obtained under overcast sky conditions to the
pixels in Brooksvale Park, we obtained a landscape-level mean visible band albedo of 0.086 ± 0.110
(Table 3). The landscape visible band albedo of Yale Playground was 0.037 ± 0.063 according to the
drone measurement. Here, the drone albedo was obtained using the clear-sky calibration functions
(Figure 5a–c). The reader is reminded that the standard deviations here were computed from the
albedo values of the pixels in the mosaics, and they therefore are indication of the variations across the
landscapes, rather than uncertainties of our estimation.

Table 3. Comparison of drone-derived and Landsat 8 visible and shortwave band albedo under clear
and overcast sky conditions for the Brooksvale Park and the Yale Playground. Refer to Supplementary
Figures S3–S6 for the spatial distributions of these albedo values.

Brooksvale Park Yale Playground

Drone-derived visible band albedo
c: 0.077 ± 0.091 c: 0.037 ± 0.063

o: 0.086 ± 0.110 o: 0.054 ± 0.090

Landsat 8 visible band albedo 0.054 ± 0.011 0.047 ± 0.012

Drone-derived shortwave band albedo
c: 0.261 ± 0.395 SN: 0.054 ± 0.074

o: 0.332 ± 0.527 SV: 0.061 ± 0.076

Landsat 8 shortwave band albedo 0.103 ± 0.019 0.128 ± 0.013

c and o represent clear and overcast sky conditions, respectively; SN and SV represent that the shadow on the Yale
Playground were taken as non-vegetation and vegetation, respectively.

The ratio of the shortwave to the visible band albedo of the non-vegetation and vegetation
ground targets, are shown in Table 4. To estimate the shortwave albedo at the landscape scale,
we first performed a classification of the mosaicked images. The results are illustrated in Figure S2.
The vegetation and non-vegetation pixels occupied 61% and 39% of the land area in Brooksvale Park,
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respectively. Their visible band albedo values were multiplied by the conversion factors obtained for
the vegetation and non-vegetation ground targets under overcast conditions, respectively, to obtain
the shortwave albedo values. Averaging over the whole scene yielded a landscape shortwave albedo
of 0.332 ± 0.527 under an overcast sky condition.

Table 4. Ratio between the shortwave and visible band albedo obtained with the spectrometer for the
vegetation and non-vegetation targets of the Brooksvale Park and the Yale Playground.

Sky Condition
Brooksvale Park Yale Playground

Vegetation Non-Vegetation Vegetation Non-Vegetation

Clear 5.08 1.18 3.91 1.24
Overcast 6.76 1.20 5.29 1.18

At the Yale Playground, a large portion of the pixels were in shadow, with low band reflectance.
The spectral information in the three visible bands was insufficient for the classifier to identify which
of these pixels were vegetation, and which were non-vegetation. Therefore for the Yale Playground,
the image was divided into three classes: vegetation (25%), non-vegetation (50%), and shadow
(25%). For the vegetation and non-vegetation pixels, the conversion factors obtained under clear sky
conditions were used to estimate their shortwave albedo. For the pixels in shadow, the conversion
factors obtained under overcast sky conditions were more appropriate. Since the pixels in shadows
were not identifiable, we first assumed that all of them were vegetation (grass, SV), and by applying
the conversion factor for vegetation (5.29), we arrived at an estimate of the landscape albedo of
0.061 ± 0.076. We then assumed that all of the pixels in shadows were non-vegetation (SN), obtaining
a landscape albedo estimate of 0.054 ± 0.074. These two estimation did not differ by much. The actual
albedo value of Yale Playground should fall between these two bounds.

4. Validation

4.1. Validation of LANDSAT Visible Band Albedo Conversion Algorithm

We used the spectrometer data to validate the Landsat albedo conversion algorithm (Equation (2)).
As shown in Figure 6, the visible band albedo from the Landsat algorithm was highly correlated with
the spectrometer measurement, with a linear correlation coefficient greater than 0.99, and a p value of
less than 0.001. The mean bias error (Landsat minus spectrometer) was 0.01 under clear sky conditions.
The linear correlation and the slope of the regression for the Yale Playground was slightly lower if the
Landsat algorithm was applied to the band reference values obtained under overcast sky conditions
(Figure 6d), but this was not a surprise because the Landsat algorithm was intended for clear skies.

The red, green, and blue bands defined for the ground targets were 620–670 nm, 540–560 nm,
and 460–480 nm, respectively, in order to match those of the camera spectral sensitivity. These bands
do not correspond precisely to the Landsat bands. Figure 6 shows that despite the slight mismatches,
the Landsat algorithm can be used to convert camera-acquired reflectance to albedo.
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are for clear sky conditions and (b,d) are for overcast sky conditions.

4.2. Landscape Albedo Validation

For the Brooksvale Park, the drone-derived visible band albedo is 0.086 ± 0.110. For comparison,
the Landsat visible band albedo is much lower, at 0.054 ± 0.0118. For the Yale Playground,
the landscape visible band albedo was 0.037 ± 0.063 and 0.047 ± 0.012 according to the drone
measurement and the Landsat measurement, respectively. Once again, because the standard deviations
were computed from the individual pixel values in the scene for both the drone and the Landsat data,
they indicated spatial variations of the albedo in the landscape, rather than uncertainties of estimation.
The values of drone- and Landsat-derived visible band albedo for the Yale Playground were in much
better agreement than those for the Brooksvale Park. We suggested that matching of sky conditions is
the dominant factor for the different accuracies, as explained in the next section.

The Landsat-derived shortwave albedo is 0.103 ± 0.019 for the Brooksvale Park and 0.128 ± 0.013 for
the Yale Playground. Compared with the landscape visible band albedo, the drone-derived shortwave
albedo values (0.332 for Brooksvale Park and 0.054 to 0.061 for Yale Playground) are quite different from
these reference values.
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5. Discussion

5.1. Effect of Sky Conditions on Albedo Estimation

We conducted the spectrometer experiment under both clear sky and overcast sky conditions for
the two drone field sites. The sky conditions had some effect on the regression statistics. The R2 values
for Brooksvale Park were higher if the ground measurements were made under overcast sky conditions
(Figure 4), the same conditions as when the UAV mission took place, than if the measurements were made
under clear sky conditions. In contrast, R2 values for the Yale Playground were higher under clear sky
conditions than under overcast sky conditions (Figure 5), keeping in mind that the UAV mission was
conducted there under mostly clear sky conditions. These results indicate that the spectrometer calibration
experiment should be conducted under the sky conditions that match those of the UAV experiment.

The Yale Playground flight was conducted at 14:30 on 30 September 2015 when the solar elevation
angle was rather low. The long shadows due to the low elevation angle were a source of uncertainty
for the albedo estimation. Choosing an appropriate flight time so that the shadow effect is minimized
is very important, especially in an urban environment where tall structures are prominent features of
the landscape.

The difference between the Landsat- and drone-derived visibleband albedo of the Brooksvale
Park were larger than those of the Yale Playground. The main factor contributing to this discrepancy is
also the sky condition. The UAV measurement was conducted under overcast conditions at Brooksvale
Park, whereas the Landsat measurement was used for clear sky conditions. Generally, surface albedo
is higher under cloudy skies than under clear skies [38]. At the Yale Playground, the sky conditions of
the UAV experiment matched those of the Landsat observation, resulting in a much better agreement
between the two albedo estimates.

5.2. Uncertainty in Landscape Shortwave Albedo

Low-cost consumer-grade cameras usually do not contain near-infrared spectral information,
and therefore this may cause problems for estimating shortwave band albedo. In this study, shortwave
band albedo was determined in a relatively arbitrary way. Brest and Goward [39] assigned weight
factors to Landsat visible, near-infrared, and mid-infrared band reflectance, and linearly combined
them to estimate the shortwave band albedo for vegetation. Similar to their method, we used the
average ratio between the shortwave and visible band albedos of non-vegetation and vegetation
ground targets to retrieve the landscape shortwave band albedo. The ratio for clear skies were lower
than that for overcast skies for vegetation targets, suggesting that plants preferably absorb more
visible radiation under clear skies than under overcast skies. For non-vegetation targets, the ratio did
not differ by much between the two different sky conditions. Vegetation ground targets had higher
ratios than the non-vegetation targets, due to the high near-infrared spectral reflectance of plant cell
structures. The result from Brest’s [40] study may provide a useful reference here: They reported
that urban downtown and high-density residential neighborhoods in Hartford, Connecticut, USA,
had ratios of near-infrared to visible band reflectance between 1.29 and 1.38. Their ratio for evergreen
and deciduous forests was between 2.53 and 3.63. From the shortwave and visible band albedos given
in their study, we infer that their non-vegetation ratio of shortwave to visible band reflectance is 1.15 to
1.19, which is in good agreement with our non-vegetation ratios (1.18 to 1.24), and their vegetation
(evergreen and deciduous trees) ratio is 1.77 to 2.32, which is much lower than our ratios (3.91 to 6.67).
The main reason for the difference is that grass leaves (in this study the vegetation ground targets
we chose was grass) have a higher spectral reflectance in the infrared waveband than tree leaves,
which can increase shortwave albedo and therefore the ratio between shortwave and visible band
reflectance [40].

Three modifications to our method can potentially improve the shortwave albedo accuracy.
First, the addition of a light-weight NIRcamera can give a direct reflectance measurement to every
ground pixel and therefore avoid the ratio method.
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Second, in the current experiments, we were only able to perform a spectrometer measurement
of the short grass targets. However, a large portion of the vegetation pixels are trees (Figure 2).
Applying the NIR-to-visible band ratio obtained from the grass targets to these tree pixels will cause
large errors. This is especially problematic for the Brooksvale Park where some trees started to become
senescent (Figure 2a). Division of the vegetation pixels into three separate categories (grass, senescent
tree leaf, and green tree leaf) and establishing the NIR to visible band for each category should improve
the shortwave albedo accuracy.

Third, we deliberately selected the ground targets to cover a wide range of reflectivity to establish
robust calibration curves, but we did not consider variations in BRDF signatures between grasses
and trees, and between sands and tarmac. Currently only two training sets (vegetation versus
non-vegetation) were used for conversions to shortwave albedo. Additional training sets accounting
for BRDF variations may improve our results.

5.3. Potential Applications

Using cameras on-board a drone can provide timely estimation of the landscape albedo.
For example, flying drone missions at different times of the day and season and in different weather and
soil moisture conditions can provide information on the dynamic variations of albedo of the landscape.
Such measurements may be especially useful in situations where monitoring with conventional
radiometers is not feasible. For example, white roofs are proposed as a strategy to mitigate the
urban heat island in the city landscape [41]. However, white paint on building roofs can suffer
from erosion and dust deposition, and thus, its albedo can quickly decrease, from the original high
values of 0.7 to 0.8 to values of 0.2 to 0.3 after a few years [42]. Direct measurement of roof albedo is
challenging because roof spaces are generally not accessible by micrometeorological tower instruments.
Drone flights conducted at different times can help to quantify the actual albedo and inform decisions
on whether the roof needs cleaning or repainting. Another advantage of the drone methodology is
its fine spatial resolution, as compared to satellite monitoring. Even with Sentinel 2 with a spatial
resolution of 10 m, some landscape features (such as small fish ponds and small buildings) will become
mixed satellite pixels.

6. Conclusions and Future Outlook

In this paper we tested a workflow for landscape albedo determination using images acquired by
drone cameras. The key findings are as follows:

(1) By adopting the method in this study, the landscape visible and shortwave band albedos of the
Brooksvale Park were 0.086 and 0.332, respectively. For the Yale playground, the visible band
albedo was 0.037, and shortwave albedo was between 0.054 and 0.061.

(2) The Landsat satellite algorithm for converting the satellite spectral albedo to broadband albedo
can also be used to convert spectral albedo that is acquired by drones to broadband albedo.

(3) Data for spectral calibration using ground targets should be obtained under sky conditions that
match those under which the drone flight take place. Because the relationship between the
imagery DN value and the reflectivity is highly nonlinear, the ground targets should cover the
range of reflectivity of the entire landscape.

(4) In the current configuration, the drone estimate of the visible band albedo is more satisfactory
than its estimate of shortwave albedo, when compared with the Landsat-derived values.
We suggest that deployment of a camera with the additional capacity of measuring reflectance in
a near-infrared waveband should improve the estimate of shortwave albedo. Future cameras
with the capacity to detect mid-infrared reflectance will further improve the shortwave albedo
detection. The BRDF effect, which was ignored in this study, should be taken into consideration
when deciding the ground calibration targets and training data in future studies.
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