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Abstract Nitrous oxide (N,0) emissions within the US Corn Belt have been previously estimated to be
200-900% larger than predictions from emission inventories, implying that one or more source categories
in bottom-up approaches are underestimated. Here we interpret hourly N,O concentrations measured
during 2010 and 2011 at a tall tower using a time-inverted transport model and a scale factor Bayesian
inverse method to simultaneously constrain direct and indirect agricultural emissions. The optimization
revealed that both agricultural source categories were underestimated by the Intergovernmental Panel on
Climate Change (IPCC) inventory approach. However, the magnitude of the discrepancies differed
substantially, ranging from 42 to 58% and from 200 to 525% for direct and indirect components, respectively.
Optimized agricultural N,O budgets for the Corn Belt were 319 + 184 (total), 188 £ 66 (direct), and 131
+118GgNyr™' (indirect) in 2010, versus 471+ 326, 198 +80, and 273 +246 GgNyr~' in 2011. We attribute
the interannual differences to varying moisture conditions, with increased precipitation in 2011 amplifying
emissions. We found that indirect emissions represented 41-58% of the total agricultural budget, a
considerably larger portion than the 25-30% predicted in bottom-up inventories, further highlighting the
need for improved constraints on this source category. These findings further support the hypothesis that
indirect emissions are presently underestimated in bottom-up inventories. Based on our results, we suggest
an indirect emission factor for runoff and leaching ranging from 0.014 to 0.035 for the Corn Belt, which
represents an upward adjustment of 1.9-4.6 times relative to the IPCC and is in agreement with recent
bottom-up field studies.

1. Introduction

As one of the most intensively managed agricultural areas in the world, the U.S. Corn Belt plays an important
role in meeting global demands for corn, soybean, and biofuel production. To sustain this production, ~5.0 Tg
of nitrogen (N) is applied as synthetic fertilizer to fields in the Corn Belt each year [Millar et al., 2010; Griffis
et al,, 2013]. Large inputs of synthetic N fertilizer and biological N fixation associated with legume cropping
are directly related to increasing concentrations of atmospheric nitrous oxide (N,0), a greenhouse gas with a
100 year average global warming potential 298 times larger than an equal mass of CO, [Myhre et al., 2013].

Constraints on regional to continental scale N,O budgets are needed to develop baseline emission estimates
that can be used as a reference in order to inform and assess policy and mitigation strategies. Investigations
using top-down or bottom-up methodologies have been used to estimate N,O emissions [Kort et al., 2008;
Miller et al., 2012; Griffis et al.,, 2013]. Using a top-down constraint and short-term air flask observations,
Kort et al. [2008] estimated that emissions over North America were up to threefold larger than from
bottom-up inventories. With regional tall tower measurements and daily flask data, Miller et al. [2012] esti-
mated that regional budgets were at least twofold larger than bottom-up inventories when performing geos-
tatistical and Bayesian inverse analyses. Using 2 years of hourly tall tower observations, Griffis et al. [2013]
applied atmospheric boundary layer approaches to estimate the N,O budget within the U.S. Corn Belt.
Their estimates agreed well with other top-down estimates based on inverse analyses [Kort et al.,, 2008;
Miller et al., 2012], and were twofold to ninefold greater than bottom-up approaches. Based on a global ana-
lysis of N entering agricultural systems, Crutzen et al. [2008] and Smith et al. [2012] concluded that N,O emis-
sions would need to be twofold to 3.4-fold larger than current bottom-up inventories in order to match the
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observed changes in atmospheric N,O concentration over the period 1860 to 2000. The large difference
between top-down and bottom-up N,O budgets at regional to continental scales implies that the emission
inventories are not adequately accounting for N,O sources. However, there is a good agreement between
top-down and bottom-up methodologies at the global scale [Del Grosso et al., 2008; Thompson et al., 2014].

Agricultural N,O emissions arise from direct emissions from fertilized soils and through two indirect path-
ways: (i) from the deposition of NH3 and NO, volatilized from synthetic fertilizer and manure; and (ii) from
the leaching and runoff of fertilizer and manure N, mainly as nitrate (NO3 ™). Previous studies from various
agricultural fields within Minnesota indicate that direct N,O emission is about 1.3% of applied synthetic N
and in excellent agreement with the Intergovernmental Panel on Climate Change (IPCC) direct emission fac-
tor [Fassbinder et al., 2013; Griffis et al., 2013]. A recent meta-analysis has shown that this emission factor is
well constrained but increases nonlinearly as N addition exceeds crop demand [Shcherbak et al., 2014].
One of the largest sources of uncertainty in the bottom-up estimates is related to the indirect sources from
agricultural ecosystems. For example, indirect emissions from leaching and runoff have an emission factor
range of 0.0005 to 0.025 (a fiftyfold range) due to a lack of observations at the appropriate spatial and tem-
poral scales [Nevison, 2000; Outram and Hiscock, 2012; Turner et al., 2015].

Agricultural drainage systems (i.e., tile lines and ditches, and surface waters), necessary to support crop pro-
duction in the U.S. Corn Belt, have shown the potential for large episodic emissions. The indirect emissions
from these streams remain poorly quantified at the appropriate spatial scales and are thought to contribute
substantially to regional emissions [Beaulieu et al, 2011; Outram and Hiscock, 2012; Turner et al., 2015].
Approximately 2.3 million hectares of land have been drained for agriculture in Minnesota. These fine-scale
drainage features represent a key hydrological conduit for the transport of N [Alexander et al., 2000]. Turner
et al. [2015] analyzed N,O emissions as a function of Strahler stream order in southern Minnesota and found
that headwater streams (i.e., stream order of 1) were the strongest sources, emitting 60% of the riverine bud-
get. Their scaling suggested that by accounting for emissions from zero-order streams that the regional N,O
budget would more than double. Further, these indirect emissions may become more important because
drainage and stream flow have both increased within the region over the last 50 years [Baker et al., 2012].

In this paper we employed an inverse analysis to simultaneously constrain the direct and indirect N,O sources
within the U.S. Corn Belt. Tall tower measurements were used to provide high-resolution information with a
large-scale footprint that is highly sensitive to emission from the US Corn Belt. A Bayesian inverse analysis was
adopted to identify and constrain the N,O budget, sources, and sensitivity to environmental drivers. Here we
address the following questions: (1) Can Bayesian inverse modeling be used to objectively constrain the
direct and indirect sources contributing to N,O emissions in the US Corn Belt? (2) To what sources are
observed tall tower N,O concentrations most sensitive? (3) What are the seasonal patterns of the direct
and indirect N,O emissions? (4) How do the environmental factors (e.g., precipitation, air temperature, soil
moisture, and surface runoff) influence N,O emissions from direct versus indirect emissions?

2. Methods

2.1. Approach Overview

The inverse approach employed in this study is outlined in Figure 1. The Weather Research and Forecasting
(WRF) model version 3.5 [Zhao et al., 2009; Nehrkorn et al., 2010; Jeong et al., 2012] provides the conditions of
wind, atmospheric stability, and planetary boundary layer (PBL) height to drive the Stochastic Time-Inverted
Lagrangian Transport (STILT) model [Gerbig et al., 2003; Lin et al., 2003, 2004], which was used to estimate
the tall tower concentration source footprint. The source footprint was multiplied by a priori emission estimates
derived from a variety of sources (see section 2.5 for details), which is added to the background concentrations,
to obtain an initial guess of N,O concentrations at the tall tower receptor. With these initial estimates and the
tall tower concentration observations, a Bayesian inverse model was used to optimize the a priori emissions
along with the relative contributions of direct and indirect sources.

2.2, Study Domain

Our study domain is focused on the US Corn Belt and includes the major corn/soybean production systems in
Minnesota, lllinois, Indiana, lowa, Missouri, Ohio, South Dakota, Nebraska, and Wisconsin. The N,O concentra-
tion measurements were made at the University of Minnesota tall tower Trace Gas Observatory (KCMP tall tower,
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Figure 1. Overview of the inverse modeling approach used to estimate direct and indirect agricultural N;O emissions.

44.689°N, 93.073°W; 244 m height) over a 2 year period (2010 and 2011). The KCMP tower is located approxi-
mately 25 km south of Minneapolis—St. Paul, MN. In the vicinity of the tower, agriculture represents approxi-
mately 46% of the land use and is representative of the larger U.S. Corn Belt region [Zhang et al., 2014].

2.3. Tall Tower N,O Measurements

During 2010-2011, air samples were analyzed at the tall tower at heights of 32, 56, 100, and 185 m. Air was
pulled continuously through each inlet to the base of the tower and then subsampled at 3 standard liters
per minute using a custom designed manifold. N,O mixing ratios were measured using a tunable diode laser
(TGA100A, Campbell Scientific Inc.,, Logan, Utah, USA) that was housed in a temperature-controlled building.
Hourly calibrations were performed using a zero and span gas. The span gas was traceable to the National
Oceanic and Atmospheric Administration (NOAA)-Earth System Research Laboratory. The hourly TDL calibra-
tion precision, estimated using the Allan variance technique [Werle et al., 1993], was estimated to be 0.5 ppb
[Griffis et al., 2013]. Following calibration, hourly average N,O concentrations were computed. Previous work
has employed N,O measurements from the KCMP tower to estimate the total regional N,O source [Griffis
et al, 2013] and as part of a global analysis to assess our current ability to constrain N,O sources worldwide
[Wells et al., 2015]. Further details regarding the sampling system and calibration can be found in Griffis et al.
[2010, 2013].

2.4. Source Footprint Simulations

The source footprint function delineates areas that influence the tall tower observations [Kim et al., 2013]. The
STILT model computes the upstream influence on a measurement site by releasing a suite of particles from
the receptor (tall tower air intake at 100 m) and following their trajectory backward in time. The time- and
volume-integrated footprint function is quantified by tallying the total amount of time each particle spends
in a volume element over a time step, normalized by the total amount of particles. Molar mass and density of
air and the mixing height are accounted for in the function in order to scale all the particles to represent the
entire vertical profile [Lin et al., 2003; Gerbig et al., 2003; Lin and Gerbig, 2005]. Multiplying the source footprint
by the a priori emissions and summing over all locations provides an estimate of the tall tower mixing ratios.

We simulated wind fields using the WRF3.5 and interpolated them to the explicit location of each particle. The
WRF3.5 was set up using three nests at 27 km, 9 km, and 3 km grid spacing. The outermost domain covers
North America, and each domain was centered on the tall tower. The simulations used WRF Single-
Moment three-class (WSM3) simple ice microphysics scheme [Hong et al., 2004], Kain-Fritsch convective
scheme [Kain, 2004], and the Yonsei University (YSU) scheme coupled to the Noah land surface model for
the planetary boundary layer (PBL) processes [Hong et al., 2006]. Initial and boundary conditions were pro-
vided by the National Center for Environmental Prediction Final Analysis (1°x 1°), with a 6 h interval.

In this study, we released 500 particles per hour from the KCMP tall tower at a height of 100 m for the years of
2010 and 2011 and transported them backward for 7 days to ensure that the trajectories adequately repre-
sented source contributions from within the U.S. Corn Belt. Furthermore, we used observations from the
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NOAA Carbon Cycle and Greenhouse Gases program [Dlugokencky et al., 1994] near the outer edge of the
source footprint to represent the background mixing ratios. These observations are from discrete air samples
collected approximately weekly in flasks at 77 sites and are zonally and monthly averaged at 4° latitudinal
resolution [Wells et al., 2015].

2.5. A Priori Emissions

We used EDGAR42 (Emission Database for Global Atmospheric Research, version 4.2, 2011, http://edgar.jrc.ec.
europa.eu), to provide a priori annual N,O emissions. Different sources in the inventory were tracked as sepa-
rate tagged tracers in our simulation, with the sum of these equal to the total ambient N,O mixing ratio.
EDGAR42 represents the source emission at a spatial resolution of 0.1° x 0.1°. Here we reorganized the anthro-
pogenic sources of N,O into five categories and included two natural source categories to represent emissions
including the following: (1) Direct emissions from agricultural soils (dirA), including synthetic N fertilizer, man-
ure management, and crop residues; (2) indirect emissions from leaching/runoff in agriculture (indA), provided
by CLM45-BGC (Community Land Model coupled to Biogeochemistry) [Oleson et al., 2013]; (3) solid waste and
wastewater (waste); (4) industrial processes (noncombustion) (industry); (5) fuel combustion and fugitive emis-
sions from fuel (energy); (6) natural emissions (natsoil) from nonagricultural soil provided by EDGAR2; and (6)
biomass burning (BB) from Global Fire Emissions Database, version 3, 2011, (http://www.globalfiredata.org).

Initially, we used the indirect emissions from agriculture from the leaching/runoff category from EDGAR42.
However, since dirA and indA from EDGAR42 are both calculated using the IPCC emission factor (EF)
approach they were found to be highly correlated (r*=0.99), and therefore, cannot be considered indepen-
dent variables in our optimization. To address this concern we used indA obtained from the CLM45-BGC. In
CLM45-BGC, the Century N model [Parton et al., 1996, 2001; DelGrosso et al., 2000] was used to simulate the
soil NOs™ pool.

Since the CLM45-BGC model does not provide indA directly, we estimated it by multiplying the soil NO3 pool
losses to leaching and runoff by the IPCC EFs default value of 0.0075 [de Klein et al., 2006]. The CLM45-BGC
model was run for 2010 with and without crops. The crop-on model simulated N leaching and runoff from
both agricultural and natural soils, while the crop-off model only simulated N leaching and runoff from nat-
ural soils. By taking the difference of these two simulations, we estimated the N leaching and runoff attribu-
ted to agricultural soils. Next, we applied the EFs to obtain the indirect emissions from agriculture. Here we
assume that N leaching and runoff from the CLM45-BGC is correct.

An important point is that indirect N,O from volatilization and redeposition is not explicitly represented in
our a priori emissions. The IPCC methodology [De Klein et al., 2006] does, however, account for agricultural
N,O emissions arising from the volatilization and redeposition of reactive N. In our methodology all indirect
emissions are allocated to one source category, indA. We attribute our indirect emission estimates to the
leaching and runoff source category, because we have observed high fluxes from surface water systems
within the region [Turner et al., 2015]. However, it is possible that these aquatic emissions arise from amplifi-
cation of the N cycle owing to both leaching/runoff and deposition. Therefore, our emission factor may be
overestimated and should be taken as a conservative upper bound.

2.6. Bayesian Inversion Methods

We defined the mixing ratio observed at the tall tower, Y, and subtracted the background value as defined in
section 2.4. Next, a scale factor Bayesian inverse method was applied for each month (April to October, in
2010 and 2011, respectively). As described in Gerbig et al. [2003], Zhao et al. [2009], and Jeong et al. [2012],
y can be modeled as

y=KI'+¢ M

where y is the observed minus background mixing ratios; I is the scaling factors for different source types; K
is the Jacobian matrix, representing the sensitivity of the observation variables to the specific source types;
and ¢ is the system error, which consists of instrumental and model errors. In our case, the columns of K cor-
respond to the mixing ratios for each of the source types being optimized, and I" consists of the a posteriori
scale factors for the seven source types.

Applying Bayes’ theorem, along with a normal distribution assumption, the maximum a posteriori (MAP) solu-
tion of I" is to minimize the cost function J(I'):
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Figure 2. (a) The a priori annual average direct N,O emissions from agriculture (unit is logqo(kg m—2 5_1)); (b) a priori
annual average indirect N,O emissions from agriculture (the coastlines are denoted by blue lines, and the US States are
denoted by black lines); (c) annual average source footprint of the tall tower (units are log;o(ppm p,lmolf1 m?s)); the USS.
Corn Belt is denoted by gray lines; (d) land use distribution from U.S. Geological Survey (red, green, yellow, gray, and light
blue colors denote the urban, agricultural soils, natural soils, wetlands, and water bodies, respectively).

2)(T) = (y —KI)'s, ™" (y —KI) + (I' = Ta)'S, (I — Ta) )

where S, and S, are the observational and a priori error covariance matrices and each element of I';=1. The
solution to VI'J(I") =0 is then given by

Tpost = (K'S, 'K +S,7") ' (K'S, "y + S, 'T,) 3)

Observational errors consist of measurement and modeling errors. The measurement error ascribed to the
TDL was based on the estimate of calibration precision, which was 0.5 ppb.

The measurement uncertainty from observations of background mixing ratios is 0.4 ppb, based on recom-
mendations from the data providers [Wells et al., 2015]. Therefore, we assign an uncertainty of 0.4 ppb for
background mixing ratios.

Since STILT releases a finite number of particles (500 particles in the simulations presented here), we follow pre-
vious work [Gerbig et al., 2003; Miller et al., 2008] and assign an uncertainty of 13% for the simulated back tra-
jectories. The uncertainty associated with the simulation of PBL height (i.e,, the effect of PBL height on
concentrations) was estimated from the monthly mean values of [Hops — Hmodell/Hobs- Hobs is the mixing height
inferred from radiosonde observations [Matross et al., 2006; Miller et al., 2008; Kretschmer et al., 2012; Kim et al.,
2013]. Hiodel is the mixing height from the WRF-STILT simulations, using Yonsei University [Hong et al., 2006]
and Mellor-Yamada-Janjic [Janjic, 2002] PBL schemes, respectively. The relative uncertainty estimated here is
21%. The modeling error ranges from 4 to 8 ppb and is much larger than the measurement error.

The uncertainties assigned to the a priori emissions shown in Figures 2a and 2b were obtained from the litera-
ture [De Klein et al., 2006; Shcherbak et al., 2014]. A recent meta-analysis found a nonlinear response in the EF for
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direct emissions from agricultural soils, however, they reported good agreement with the IPCC default value
when N rates were within the range of typical values for the Corn Belt albeit with reduced uncertainty, which
is ~66% when the N application rate is ~150 kg ha™' [Shcherbak et al., 2014]. The uncertainty in the indirect
emissions was set at 401% by propagating assumed uncertainties of 327% in the default EFs and 233%
for the amount of N in leaching/runoff [de Klein et al., 2006]. Based on the IPCC recommendations, the
uncertainties of industry, waste, energy, natsoil, and BB to the a priori emissions were 30%, 30%, 30%, 38%,
and 30% in the default EFs, respectively [Gmez et al., 2006]. Therefore, initial relative error estimates of 66%,
401%, 30%, 30%, 30%, 38%, and 30% were applied for dirA, indA, industry, waste, energy, natsoil, and BB, respec-
tively, to construct the a priori error covariance (see supporting information for more details related to the
Bayesian inversion).

We conducted two tests to evaluate the sensitivity of the Bayesian inversion to the a priori flux distribution
and spatial aggregation errors. First, we examined the differences when using a relatively high spatial resolu-
tion (a priori inventory with a 0.1°x 0.1° resolution) versus a lower spatial resolution (a priori inventory with a
degridded 0.5°x 0.5° resolution) flux inventory. Second, we perturbed the original spatial distribution of the a
priori flux inventory with a random variable that varies in space, having a normal distribution with a mean of
unity, and a standard deviation of 30%. Both tests indicated that the sensitivity of the inversion results to spa-
tial resolution and source distribution were not statistically significant at the 5% significance level.

We acknowledge that our modeling framework has limitations associated with the assumptions of spatial dis-
tribution and source aggregation. We are depending on measurements from one point in space and, there-
fore, cannot solve independently for emissions from every model grid cell and time and individual source
sector. This is a limitation of all similar atmospheric inversion studies and has been acknowledged previously
[Mikaloff Fletcher et al., 2004; Carouge et al., 2010; Bousquet et al., 2011].

2.7. Sensitivity to True Values

In order to identify the source types that contribute to the tall tower concentrations, we calculated the aver-
aging kernel (AK) to quantify the sensitivity of the retrieved emissions to their true value [Rodgers, 2000; Kim
etal, 2013].

The Bayesian inverse framework constrains the source categories and provides optimized emissions using a
cost function analysis. The AK represents the sensitivity of the MAP solution, X, to the true state, x (i.e,, the true
emissions from a specific source type):

A:1—§S{’:Z—§

@
where A is the averaging kernel and $ and S, are the a posteriori and a priori error covariance matrices,
respectively. The AK is used to gain insights regarding (1) how sensitive are the tall tower measurements
to some specific source types and (2) whether the source types will be resolved from one another. This type
of sensitivity analysis allows identification of the source types contributing to the tall tower N,O concentra-
tions [Heald et al., 2004; Kim et al., 2013].

2.8. N,O Emission Budgets
Following the optimization, we obtained the total N,O budget (B)) for each source type j according to

n

B = (fjxSxt) 6)
i=1
where n is the number of grid cells within the U.S. Corn Belt. For each grid cell, f; is the a posteriori N,O emis-
sions (kg Nm™2s™") for source type j, where the a posteriori emissions are the a priori emissions multiplied by
the corresponding scaling factor (I'), S is grid cell area (m?), and t is time (s).

ArcGlIS (v.10.1, Environmental Systems Research Institute, Redlands, California, USA) was used to identify grid
cells within the Corn Belt and to compute the areas of each grid cell intersected by the Corn Belt. The inter-
section function was applied for the nine States (South Dakota, Nebraska, Kansas, Missouri, Minnesota, lowa,
lllinois, Ohio, and Indiana) to obtain all the grid cell areas over the Corn Belt.
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Figure 3. Average seasonal source footprints for measurements at the KCMP tall tower (indicated by crosses), 2010 (units:
logqo(ppm umol_1 m? s)). (@) Spring: March, April, and May; (b) summer: June, July, and August; (c) fall: September, October,
and November; (d) winter: December, January, and February.

3. Results and Discussion
3.1. Source Footprint of the Tall Tower

The tall tower concentration source footprints (Figures 2c and 3) indicate that the measurements were influ-
enced by sources from within the U.S. Corn Belt. Figure 3 shows the season-averaged footprint function at the
KCMP tall tower for 2010 as derived from the WRF-STILT model. The source footprint at the tall tower reached
north to Canada and extended south to the Gulf of Mexico. Kim et al. [2013] and Hu et al. [2015] also con-
cluded that the KCMP tall tower measurements (at the 185 m level) were representative of surface influence
at the continental scale.

Areas where the footprint strength was greater than 1e—4 ppm pmol™' m?s™', representing the dominant

surface influence to the tall tower observations, were defined as intense footprint zones. These intense foot-
print zones encompassed the Corn Belt and extended north to southern Canada. Further, these analyses
show that natural sources outside of the Corn Belt can also have an important influence on the tall tower
observations. Figure 2d shows the land use categories of our study domain [Homer et al., 2011]. Statistical
analysis of the land use within the intense footprint zone indicates that agricultural soils, natural soils, urban
areas, and water bodies accounted for 81.6%, 12.0%, 0.5%, and 1.4%, respectively. Based on source footprint
analyses, the tall tower observations appeared to provide adequate representation of the emissions and
transport of N,O related to the U.S. Corn Belt.

3.2. A Priori and A Posteriori Emissions

In the first Bayesian inversion, seven source types were included in the optimization (as described in section 2.5
). The AK obtained from this inversion (Table 1) revealed extremely weak sensitivities for the industry, energy,
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Table 1. Averaging Kernel of the Source Types
Source Categories dirA indA natsoil Industry Energy Waste BB

AK 0.81 0.90 0.93 0.002 0.002 0.005 0.002

waste, and biomass burning sources, indicating a very limited contribution from these source types to the tall
tower observations. These source types, therefore, were not resolved by the tall tower observations. However,
the sensitivity is strong for the direct and indirect agricultural sources and the natural sources. This is supported
by the statistical analyses of the land use within the source footprint described above as well as previous inves-
tigations [Miller et al., 2012; Saikawa et al., 2013; Griffis et al., 2013]. The source categories to which measure-
ments were insensitive were generally a result of extremely low emissions (e.g., biomass burning) or very
limited area (e.g., industry). Agricultural soils and natural soils are key sources from within and outside of the
intense footprint zones, respectively. Based on the low sensitivities as indicated by the AKand the land use ana-
lyses, the industry, energy, waste, and biomass burning source categories were eliminated from further consid-
eration, and a second Bayesian inversion was performed where we included only the direct and indirect
agricultural and natural soil source categories. The annual average a priori emissions for this second inversion
were 0.12 (direct), 0.04 (indirect), and 0.04 (natural soils) nmolm—2s~", respectively, which are represented
spatially in Figures 2a and 2b. This second inversion yielded the final optimized a posteriori emission estimates.

To probe the degree that the a priori error construction influenced the optimized emissions, we performed a
wide range of sensitivity studies by varying the a priori errors of 46-66% (direct) and 300-400% (indirect) in
the in the Bayesian inversion (Table 2). The a posteriori errors were significantly reduced in both direct and
indirect emissions in the cost function analysis, indicating a robust constraint of the Bayesian inverse
approach. Our best estimate suggests that annual mean (£ the a posteriori error) emissions in total, direct,
and indirect agricultural sources were 0.30+0.16, 0.18 £0.05, and 0.12+0.11 nmolm~2s~" in 2010 and
0.44+0.27,0.19+0.05, and 0.25+0.22 nmolm~2s™" in 2011, respectively.

The relative uncertainty from natural soils reduced significantly from 38% to ~10%, suggesting a robust con-
straint. To investigate the impact of natural soils to agricultural sources, in the a priori emissions, a sensitivity
test was performed by (i) increasing the natural soil source by 50% and (ii) decreasing the natural soil source
by 50%. The results indicated that natural soils had little impact on both direct and indirect emissions from
agriculture in the optimization. The optimized natural soils emissions were ~1.8 times larger than indicated
from EDGAR2 within the Corn Belt and is consistent with the findings of Wells et al. [2015].

The a posteriori direct emissions were 1.5- to 1.6-fold larger than the IPCC bottom-up approach, suggesting an
EF ranging from 1.5% to 1.6%, in close agreement with recent studies using a nonlinear response model [Grace
etal,2011; Shcherbak et al., 2014]. The a posteriori indirect emissions were 2.4- to 5.1-fold larger than from IPCC
EF approach, providing further support [Outram and Hiscock, 2012; Griffis et al., 2013; Turner et al., 2015] that the
indirect emissions are substantially underestimated by the IPCC bottom-up approach for this region.

3.3. Seasonal and Interannual Variations

As shown in Figure 4, there were clear seasonal and interannual variations in the a posteriori emissions. In both
years, direct emissions began to increase after the snow melt, reached the peak in July, and then decreased

Table 2. A Posteriori Scale Factors and a Posteriori Errors for the Bayesian Inversion With Various Sensitivity Tests
A Priori Errors Optimized Direct Emissions Optimized Indirect Emissions

Direct Emissions Indirect Emissions Scaling Factor A Posteriori Error Scaling Factor A Posteriori Error

46% 300% 2.0 28% 4.7 90%
46% 350% 1.9 29% 5.0 102%
46% 400% 1.8 29% 53 100%
56% 300% 2.2 33% 43 91%
56% 350% 2.1 35% 4.7 102%
56% 400% 2.0 35% 5.0 101%
66% 300% 25 37% 4.0 94%
66% 350% 2.2 39% 43 100%
66% 400% 2.1 38% 4.6 95%
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Figure 4. (a) Direct and (b) indirect N,O emissions from agriculture within the U.S. Corn Belt for 2010 and 2011, respec-
tively. Error bars represent the a posteriori uncertainties after optimization, for direct and indirect emissions.

through to the end of October. Interestingly, indirect emissions began to increase after the snow melt and
reached their maximum in June. We attribute this to a combination of spring time fertilization throughout
much of the Corn Belt and relatively high runoff and tile outflow. Summing over all seasons, our best estimates
of the annual agricultural N,O budgets for the Corn Belt were 319+ 184 (total), 188 £ 66 (direct), and 131
+118GgNyr~" (indirect) in 2010 versus 471 + 326, 198 + 80, and 273 + 246 GgNyr~" in 2011. The direct and
indirect budgets in 2011 increased by 5% and 108% over 2010, respectively. Hydrometeorological factors
are explored to identify drivers that result in the large difference in N,O emission partitioning.

Figure 5 shows a comparison of the N,O budget and its partitioning between direct and indirect emissions
obtained from a variety of independent methods. The Bayesian inverse approach estimates the N,O budget
in 2010 (316 + 183 Gg N yr~"), which is in reasonable agreement with tall tower atmospheric boundary layer
approaches (420 +50 Gg Nyr") [Griffis et al., 2013], as well as other top-down methodologies [Kort et al.,
2008; Miller et al., 2012] but much larger than that derived from IPCC and other bottom-up approaches includ-
ing EDGAR and Global Emission Initiative [Bouwman et al., 1995]. The direct N,O budget from the IPCC EF
approach (120GgNyr~") is within the uncertainty range of our approach (188+66 GgNyr~"). Therefore,
for direct emissions, there is no significant difference between IPCC estimate and the Bayesian inversion.
For indirect emissions, the IPCC estimate (52.3 GgNyr™") is within the uncertainty range from our Bayesian
inversion (131+118Gg Nyr~'). However, the optimization significantly reduces the uncertainties (Table 2)
and places a better constraint on the indirect emissions. Furthermore, our findings also support the growing
evidence [Outram and Hiscock, 2012; Hinshaw and Dahlgren, 2013; Turner et al., 2015] that indirect emissions
are higher than that estimated using the IPCC EF approach.

The direct emissions from the Bayesian inverse model suggest an EF ranging from 1.5%to 1.6%, 1.5 to 1.6 times
larger than the default IPCC EFs. Shcherbak et al. [2014] showed that the N,O emission factor increases nonli-
nearly as fertilizer N exceeds crop demand, and their nonlinear response model suggests a regional EF of
1.7%, assuming an average N application rate of 143 kgNha "' for the Corn Belt [Griffis et al., 2013]. This is in
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Figure 5. Comparison of N,O budgets for the U.S. Corn Belt in year 2010 estimated using different methods (tall tower:
boundary layer method at the KCMP tall tower [Griffis et al., 2013]; IPCC EFs: estimate from IPCC EF method). Error bars
indicate the uncertainties of regional budget estimate from direct and indirect emissions, respectively (the Bayesian
inversion shows the N,O budget from April to October in 2010, a total of 7 months; the KCMP tall tower, IPCC EFs, and
EDGAR42 all show an annual budget).

excellent agreement with our Bayesian inverse analysis and slightly higher than that suggested by Griffis et al.
[2013] and Fassbinder et al. [2013]. Using an independent approach, our analyses indicate that the both direct
andindirectemissionsare underestimatedin the IPCCinventories and provide further support that the large dis-
parity between top-down and bottom-up methodologies is likely due to poor constraints on indirect emissions.

It is estimated that on the order of 25-50% of the U.S. Corn Belt has been drained to support agricultural pro-
duction [U.S. Department of Agriculture, 1987]. Although there is growing evidence that fine-scale drainage fea-
tures are hot spots of indirect N,O emissions [Outram and Hiscock, 2012; Turner et al., 2015], quantifying the
spatiotemporal variation in these emission remains a challenge. The episodic nature and high spatial variability
of these hot spots make them difficult to characterize and give rise to large uncertainties when integrating over
space and time to obtain annual emission estimates. The Bayesian inverse model approach used here suggests
a regional EF ranging from 0.018 to 0.038 for indirect emissions. In order to directly compare to IPCC EF related
to leaching and runoff, we subtracted N,O emissions from volatilization and redeposition. Griffis et al. [2013]
used wet and dry N deposition (WDD) and the redeposition of local N (RDP) to represent indirect volatilization
pathways. Multiplying WDD and RDP (a total of 3.1 Tg Nyr~") by the IPCC indirect EF associated with volatiliza-
tion (0.01, ranging from 0.002 to 0.05) gives an estimate of the N,O budget from volatilization and redeposition
of approximately 31 Gg N yr™". The indirect volatilization budget was then subtracted from the indirect emis-
sions estimated from the Bayesian inversion to obtain the indirect emissions from leaching and runoff. The
results indicate a regional EF ranging from 0.014 to 0.035 for indirect emissions related to leaching and runoff
thatisinrelatively good agreement with that proposed by Turneret al.[2015]. They employed a chamber-based
approach to measure riverine N,O fluxes across stream orders ranging from fine-scale tile drainage to the
Mississippi River. Interestingly, their data and analyses suggest a regional EF ranging from 0.007 to 0.03, which
is in relatively close agreement with our inverse modeling approach. These independent approaches provide
strong evidence that indirect emissions from drainage networks and streams within the U.S. Corn Belt are
important sources and that their EF should be revised accordingly.

3.4. Environmental Controls on Direct and Indirect N;O Emissions

Nitrogen availability and environmental factors including air temperature, soil moisture, precipitation, and
surface runoff are important drivers of N,O emissions [Singurindy et al., 2009; Zona et al., 2011; Luo et al.,
2013]. Hourly weighted means of environmental variables of interest from WRF3.5 were computed for the
entire study domain, with the weighting based on the intensity of the source footprint function for each grid
cell and smoothed using a 24 h running mean. For the study period (May to September, 2010 and 2011), the
mean air temperature was 15.6 and 16.2°C, respectively. The cumulative precipitation was 496 and 545 mm,
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Table 3. Linear Regression Analyses of Environmental Factors and the Direct/Indirect Scaling Factors
Scaling Factors

Direct Emissions Indirect Emissions
r p Value r p Value
Air temperature (T) 0.25 0.024 0.2 0.08
Soil Moisture (0) 0.007 0.76 0.32 0.02
Surface runoff (R) 0.0001 0.97 0.33 0.01
Combined effect (T, 6, R) 0.26 0.02 0.44 0.0047

the mean soil water content was 0.32 and 0.39kg/kg, and the cumulative surface runoff was 25.3 and
49.9mm in 2010 and 2011, respectively. The larger cumulative precipitation in 2011 contributed to the high
soil water content and surface runoff, with a soil water content and surface runoff that was 22% and 97%
higher in 2011, respectively. Interestingly, both years showed similar direct emissions, while in 2011 the indir-
ect emissions were 108% greater than in 2010.

To investigate how the interannual variations were driven with respect to important environmental factors,
we applied biweekly Bayesian inverse analyses, from May to September in both 2010 and 2011. The
Bayesian inversions permit retrieval of the scaling factors, indicating the amplitude of direct and indirect
N,O emissions, respectively. Combined with the 2 week mean environmental parameters, a linear regression
analysis was conducted to investigate the correlations with direct/indirect emissions and the environmental
variables (Table 3). We derived a multilinear regression model (MLR) that incorporated air temperature (T), soil
water content (), and surface runoff (R) as explanatory variables using MATLAB (Matlab, Version R2015a,
Mathworks, Natick, Massachusetts, USA). The MLR (f(T, 6, R)) has the form

l"zf(T797R) =bo + bT+ b0 + bsR (6)
where I is the direct/indirect scaling factor.

The statistical analyses indicate that biweekly variability in direct emissions had a positive linear correlation
with air temperature (p = 0.024, and r* = 0.25), but was not correlated with soil water content (p = 0.76) or sur-
face runoff (p =0.97). Mean air temperatures within the study period in 2010 and 2011 were similar and sup-
port why direct emissions were similar in both years.

The biweekly variability in indirect emissions show a moderate correlation with air temperature (p =0.08, and
r?=0.20), strong correlation with soil water content (p =0.02, and r?=0.32), and surface runoff (p=0.01, and
r* =0.33). The combined effect explains a significant amount (p = 0.005, and r* = 0.44) of the variability in the
indirect emissions.

Short-term heavy precipitation is also an important factor contributing to wetter and anaerobic soil conditions
and heavier surface runoff and therefore larger direct and indirect emissions [Fassbinder et al., 2013]. For day of
year (DOY) 121-135 and DOY 136-152 2011, the two time periods shared similar air temperature (16.8°C and
17.3°C, respectively), but the intense precipitation event during DOY 136-152 increased the cumulative preci-
pitation from 30 mm to 127.7 mm. This event increased the soil water content by 13%, as well as cumulative
surface runoff significantly from 3.0 mm to 11.7 mm. During this time period, the Bayesian inverse analysis indi-
cated that direct and indirect emissions increased by 40% and 83%, respectively.

These findings, and related results from Turner et al. [2015], demonstrate that the offsite transport of N from
farm fields is a dual environmental threat. The role of nitrate in the generation of hypoxia in water bodies is
well known; its role as a precursor to substantial indirect emissions of N,O has so far been less appreciated.
The seriousness of both problems underscores the importance of reducing the leakage of reactive nitrogen in
agricultural systems.

4. Conclusions

Based on high-precision N,O tall tower observations and a novel Bayesian inversion method that partitions
N,O emissions into its direct and indirect components, we have shown the following:
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1. N0 emissions from agricultural sources within the Corn Belt were 319 + 184 (total), 188 + 66 (direct), and
131+118GgNyr~" (indirect) in 2010 versus 471+326, 198+80, and 273 +246 GgNyr~' in 2011. The
direct and indirect emissions in 2011 increased 5% and 108%, respectively, compared to 2010 due to
increased precipitation.

2. Direct and indirect N,O emissions were out of phase. Indirect emissions reached a maximum in June,
while direct emissions reached a maximum in July. This phase shift is attributed to a combination of
spring-time fertilization throughout much of the Corn Belt and relatively high runoff that peaks in June.

3. Inverse modeling analyses support that the indirect emission factor associated with runoff and leaching
ranges from 0.014 to 0.035 for the U.S. Corn Belt. This represents an upward adjustment of 1.9- to 4.6-fold
relative to the Intergovernmental Panel on Climate Change and is in excellent agreement with recent
bottom-up field studies.
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