
Abstract  Coal mining ranks as the largest anthropogenic CH4 source in China with emission factors 
(EFs) varying up to 30-fold among inventories when applied to different provinces. The lack of independent 
evaluation of coal mining CH4 EFs in China is one of the main uncertainties in estimating national total CH4 
emissions. Shanxi province, which supplies 25% of the national coal production, is the largest coal mining 
CH4 emission region in China and even among the world's largest coal production regions. This area is also a 
significant anthropogenic CO2 source because of high-density power and industrial activities. Given the large 
uncertainties in CH4 and CO2 inventories from provincial to city scales, questions remain whether state-of-the-
art inventories have accurately estimated these emission hotspots. Here, we evaluate CH4 and CO2 emissions 
from one of the world's largest coal production regions near Taiyuan City, the capital of Shanxi province, 
China. CH4 and CO2 concentrations were measured from March 2018 to February 2019 from a 30-m tower. 
These data were used within an inverse modeling framework to simulate both CH4 and CO2 concentrations 
and to evaluate EFs for this region. Results show generally good agreement between observed and simulated 
CH4 concentrations. However, the CO2 simulations were much lower compared to the observations. Given 
the minor role of NEE-induced CO2 enhancements, we believe that the large difference is attributed to the 
underestimation of anthropogenic CO2 emissions. In general, the derived posteriori anthropogenic CH4 
emissions were 85.2(±18.1)% of a priori emissions, where fugitive CH4 from coal mining accounted for 
∼92.7% of total anthropogenic emissions. The derived coal mining EF was 23.2(±4.9) m 3 CH4/ton coal, close 
to the default value of high CH4-content coal, but twofold the province average that were reported by previous 
observation-based studies in Shanxi province, indicating large spatial inhomogeneity in the coal mining CH4 
EF. The posteriori CO2 emissions were 1.6-fold of the a priori emissions, highlighting underestimation of CO2 
emissions in industrial cities and some potential large emission sources that are missing from state-of-the-art 
inventories. Finally, we also emphasize the use of satellite observations and denser tower-based networks are 
essential in resolving the spatial inhomogeneity of greenhouse gas emissions.

Plain Language Summary  The understanding of anthropogenic CH4 and CO2 emissions is basis 
for climate mitigation especially for global top emitting countries, but the largest issue before addressing 
above question is that many previous studies have found considerable bias of greenhouse gas emission 
for almost all inventories from city to regional scales. These facts hindered the government to make and 
evaluate corresponding mitigation policies. Here, to quantify CH4 and CO2 emissions at one of global largest 
CH4 and CO2 hotspot in China, we conducted 1 year tower-based atmospheric CH4 and CO2 concentration 
measurements and used atmospheric inversion method to constrain and evaluate their emissions, we found coal 
mining CH4 emission factor has less bias but CO2 emissions were underestimated by 1.6-fold, highlighting 
underestimation of CO2 emissions in industrial cities and some potential large emission sources that are missing 
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•	 �The posteriori CO2 emissions were 
1.6-fold of the a priori emissions, 
indicating CO2 emissions in industrial 
cities were largely underestimated

•	 �Some large CO2 emissions are missing 
and more work is needed for urban 
government to fully understand their 
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1.  Introduction
Methane (CH4) and carbon dioxide (CO2) are the main anthropogenic greenhouse gases contributing to global 
warming. Together they accounted for ∼81% of direct anthropogenic radiative forcing (Seto et al., 2014). Hence, 
the implementation of emission reduction policies for both CH4 and CO2, especially in the top emitting countries, 
is needed to mitigate future climate change. China is the largest emitter for anthropogenic CH4 and CO2, with 
annual emissions reaching 0.065 Gt for CH4 and 12 Gt for CO2 in 2020. The largest anthropogenic sources for 
CH4 were fugitive emissions from coal mining which accounted for 31% of national total emissions, and power 
industry accounted for 41% in anthropogenic CO2 emissions (Crippa et al., 2021). In 2021, China has made a 
commitment to reduce CH4 emissions under the Glasgow Agreement. Further, an ambitious commitment was 
also made in 2020 to reach a CO2 emission peak by year 2030. To achieve these emission reductions, a national 
plan has been developed using a hierarchal approach from the national, regional, and local scales and includes 
different units such as provinces, cities, and specific facilities. Accurate quantification of emission changes is the 
basis to evaluate whether these commitments are effectively fulfilled. However, large uncertainties in estimating 
CH4 and CO2 emissions from local to regional scales may hinder these ambitious emission reduction goals (Han, 
Zeng, Oda, et al., 2020; Lin et al., 2021; Seto et al., 2014).

Activity data and emission factor (EF)-based “bottom-up” inventories are treated as baselines for local govern-
ment to evaluate emission reduction rates. Many recent studies have reported large uncertainties in almost all 
state-of-the-art CH4 and CO2 inventories for China, where relative difference of these inventories can be >200% 
at city scale, especially for industrial cities, with averages of −57%–162% at provincial scales among different 
sectors (Han, Zeng, Oda, et al., 2020; Han, Zeng, Zhang, et al., 2020; Lin et al., 2021). Uncertainties in CH4 emis-
sions are comparable with CO2 for some specific sectors such as waste treatment, with a relative difference larger 
than 2 times for China (Lin et al., 2021). Further, the underlying anthropogenic CH4 emissions and its changes 
were still under debate with different conclusions including largely increased at the rate of 1.1 Tg/year (Miller 
et al., 2019), slightly increased by 0.1–0.4 Tg/year (Lu et al., 2021; Saunois et al., 2020; Sheng et al., 2021), and 
slightly decrease (Gao et al., 2020; Liu et al., 2021; Sheng et al., 2019).

One of the main uncertainties in estimating CH4 emission is caused by underground coal mining. Such emission 
is mainly from ventilation shafts, where atmospheric air was pumped into the mines to keep lower CH4 concen-
tration (<0.5%) and to avoid dangerous conditions in the workplace. Hence, emissions can be affected by burial 
depths, different CH4-content coal, mining methods/technologies, and the utilization rate. The available CH4 EFs 
from underground coal mining for China were mainly based on nationwide measurements prior to the year of 
2006 for ∼800 underground mines, and are highly spatially heterogeneous (Sheng et al., 2019; Zhu et al., 2017). 
The province-based EFs considerably varied by 30-fold from smaller than 1 m 3 CH4/ton coal in Beijing to greater 
than 30 m 3 CH4/ton coal as Chongqing. Further, observations also found that EFs largely varied within the same 
province by sevenfold (Sheng et al., 2019). While these field measurements provided important EFs, information 
for specific regions remain very limited. Further, improved coal mining technologies can cause significant bias 
in EFs when estimating recent national CH4 emissions (Lin et al., 2021; Zhu et al., 2017). Coal mining CH4 EFs 
used for China have shown large discrepancies among different inventories, i.e., the EDGAR v4.2 was found 
to overestimate EFs in China by a factor of 2 for the coal mining because it applied the European averaged EFs 
(Saunois et al., 2016). These disagreements indicate that a robust approach is needed to monitor anthropogenic 
CH4 emissions, especially from the coal mining. It can help to fill the knowledge gap in understanding their spati-
otemporal evolutions, and provide independent constraint on regional CH4 emissions.

Urban areas are also emission hotspots for both CH4 and CO2 and account for 21% and 70% of global anthropo-
genic emissions, respectively (Marcotullio et al., 2013; Seto et al., 2014). Such contributions are thought to be 
much larger in Northern China considering there are more anthropogenic emission sources concentrated in indus-
trial cities and coal production areas. The above facts make these regions to be the most important target region 
to conducting emission mitigation policies for China. Hence, understanding the main sources and its underlying 
driving factors in these industrial cities is urgently needed for mitigation policy making and application. Among 
all provinces in China, Shanxi is a representative province which not only provide 25% (8.93 × 10 8  tons) of 

from state-of-the-art inventories. Our findings indicate more work is needed for urban government to fully 
understand their greenhouse gases emissions.
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national total coal production in 2018, even larger than the world's second largest coal production country India 
(7.45  ×  10 8  tons). Taiyuan City and Shanxi province are also among the most severely polluted regions on 
earth because of the high density of heavy industry, coal combustion, and anthropogenic CO2 emissions (Mu 
et al., 2019; Wei et al., 2018). A recent bottom-up study found five of the top 10 largest Chinese CH4 emission 
cities were located in Shanxi province (Wang et al., 2021). These combined factors indicate this region is one of 
the largest hotspots in China and even the world for both anthropogenic CH4 and CO2 emissions.

Tower-based atmospheric inversions provide a useful tool to independently evaluate local emissions and reduce 
corresponding inventory uncertainty (Gurney et al., 2021; Le et al., 2021; Sargent et al., 2018; Turner et al., 2020). 
To our best knowledge, no study has used tower-based concentration and atmospheric inverse modeling to evalu-
ate coal mining EFs in China. Here, we constrain anthropogenic CH4 and CO2 emissions and provide assessment 
of inventory uncertainty for CH4 emission leakage from coal mining in one of the largest anthropogenic emission 
regions of China. This study is based on 1-year continuous atmospheric CH4 and CO2 concentration observa-
tions from March 2018 to February 2019 using a 30-m tower in Taiyuan City, the capital of Shanxi province. 
The hourly concentration observations and three different inversion approaches were used to provide a robust 
constraint on anthropogenic CH4 and CO2 emissions, especially for coal mining CH4 EFs.

2.  Materials and Methods
2.1.  Atmospheric CH4 and CO2 Concentration and Supporting Materials

Atmospheric CH4 and CO2 concentration measurements were conducted on a tower at the Xiaodian meteorologi-
cal station (112°33′E, 37°44′N). The Xiaodian station is located between Jinzhong and Taiyuan City (Figure 1a). 
There are no obvious industrial sources within a 10-km radius of the observation site. The air sampling inlet 
was mounted at a 30-m height on the tower. The CH4 and CO2 concentrations were measured near continuously 
using a wavelength scan cavity ring-down spectroscopy-based analyzer (model G2301, Picarro Inc., Sunnyvale, 
CA). The measurement system was calibrated every 2 hr with standard gases from the Atmospheric Composition 
Observation and Service Center of the China Meteorological Administration that was traceable to NOAA/GML 
(NOAA Global Monitoring Laboratory) standards. The measurement cycle consisted of air sampling for 115 min 
followed by standard gas calibration for a period of 5 min. The details of the calibration system are described in 
Fang et al. (2014). In general, 97.0% of hourly CH4 observations and 96.9% of the CO2 observations were avail-
able for the whole year observation period.

Daily column-averaged dry air CH4 mixing ratio (XCH4) from TROPOMI measurements between May 2018 
and April 2019 were also used to illustrate the spatial distribution of CH4 concentration within Shanxi province. 
The TROPOMI retrievals are from the polar-orbiting Sentinel-5 Precursor satellite with spatial resolution of 
7 km × 7 km (Zhang et al., 2020). Observations from the Xiaodian meteorological station were used to evaluate 
simulated meteorological fields from the Weather Research and Forecasting (WRF version 4.2.2) model includ-
ing air temperature at 2 m (T2m), relative humidity (RH), downward solar radiation (S↓), wind speed (WS), and 
wind direction (WD) at 10 m.

The observation site is located between Taiyuan and Jinzhong Cities as shown in Figure 1a. The main urban areas 
in both cities are closely connected and are likely to have a strong influence on the CH4 and CO2 observations. 
Here, we have named the core urban area in both cities as the Taiyuan-Jinzhong Metropolitan (TJM) area. Based 
on a recent bottom-up estimate of CH4 emissions for all Chinese cities in the year 2015, Taiyuan ranked as the 
highest and Jinzhong as the ninth highest CH4 emission city in China (Wang et al., 2021). Hence, the TJM area 
is likely the highest anthropogenic CH4 emission urban area in China. The population of the TJM area was 8.7 
million in 2020 and raw coal production was 12.18 × 10 7 tons in the year 2018. Shanxi province is surrounded 
by four provinces including Inner Mongolia, Hebei, Henan, and Shaanxi (Figure 1b). The raw coal production in 
these five provinces accounted for 74% of the national total production for China in 2018. It ranked as the world's 
greatest hotspot for CH4 emissions from coal production and also for total anthropogenic CH4 emissions. The 
coal productions within Shanxi province were obtained from Shanxi Statistical Yearbook 2018–2019 (Shanxi 
Provincial Bureau of Statistics, 2018–2019).

2.2.  Simulation of CH4 and CO2 Concentration

In general, atmospheric CH4 (and CO2) at the observation site is the sum of background air (i.e., when an air mass 
enters the study domain) and the enhancement contributed by regional sources/sinks within the study domain. 
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The enhancements are simulated by coupling regional CH4 (and CO2) flux information with dynamic concentra-
tion footprint estimates that considers the atmospheric transport process within the study domain. The simplified 
equations for CH4 (and CO2) concentration simulations can be expressed as

CH4_sim = CH4_bg +

168
∑

𝑖𝑖=1

𝑓𝑓𝑖𝑖 ×
(

𝐸𝐸CH4_anthro

)

𝑖𝑖
+

168
∑

𝑖𝑖=1

𝑓𝑓𝑖𝑖 ×
(

𝐸𝐸CH4_wetland

)

𝑖𝑖
� (1)

CO2_sim = CO2_bg +

168
∑

𝑖𝑖=1

𝑓𝑓𝑖𝑖 ×
(

𝐸𝐸CO2_bio

)

𝑖𝑖
+

168
∑

𝑖𝑖=1

𝑓𝑓𝑖𝑖 ×
(

𝐸𝐸CO2_anthro

)

𝑖𝑖
� (2)

where 𝐴𝐴 CH4_sim , 𝐴𝐴 CH4_bg , f, 𝐴𝐴 𝐴𝐴CH4_anthro
 , and 𝐴𝐴 𝐴𝐴CH4_wetland

 represent the simulated atmospheric CH4 concentration, 
background, footprint, enhancement contributed by anthropogenic and wetland flux (Equation 1), respectively. 
The number of 168 hr indicates air particles are released and tracked for 7 days. The same as CH4 for CO2 in 
Equation 2.

Figure 1.  (a) Land use map for Taiyuan-Jinzhong Metropolitan (TJM) area and the figure for tall tower, (b) domain setups in WRF-STILT model, and meteorological 
fields comparisons for (c) 2-m air temperature, (d) wind speed, (e) wind direction, (f) relative humidity, (i) downward shortwave radiation. Note D-STILT: STILT model 
domain, D1: outer nested domain in WRF model, D2: inner nested domain in WRF model, red symbol “×” and “Δ” represent tall tower location and WLG observation 
site, respectively, other two sites of Beijing (BJ) and Xianghe (XH) are also labeled.
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Following our previous work (Hu et al., 2019, 2021), the CH4 and CO2 background values were derived from 
weekly sample observations at the Waliguan site (hereafter WLG, 36°17′N, 100°54′E; https://www.esrl.noaa.
gov/gmd/dv/data/ last accessed: 2 January 2022). The site location is shown in Figure 1b. Here, the CCGCRV 
curve fitting algorithm (see Thoning et al. (1989) as recommended by NOAA, https://www.esrl.noaa.gov/gmd/
ccgg/mbl/crvfit/crvfit.html) was used to calculate the hourly background values from the weekly observations

𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡
2 +

4
∑

𝑛𝑛=1

[𝑐𝑐𝑛𝑛 × sin(2𝑛𝑛𝑛𝑛𝑛𝑛) + 𝜑𝜑𝑛𝑛 × cos(2𝑛𝑛𝑛𝑛𝑛𝑛)]� (3)

where y represents the CH4 and CO2 observations, t is time, 𝐴𝐴 𝐴𝐴0 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴2 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴1 , 𝐴𝐴 𝐴𝐴2 , 𝐴𝐴 𝐴𝐴2 , 𝐴𝐴 𝐴𝐴3 , 𝐴𝐴 𝐴𝐴3 , 𝐴𝐴 𝐴𝐴4 , 𝐴𝐴 𝐴𝐴4 are regres-
sion parameters. Here, we note that only one site has been selected to characterize the influence of background 
CH4 and CO2 concentrations for the atmospheric inversions. The associated uncertainties for this approach are 
discussed below.

2.2.1.  Atmospheric Transport Model

The Stochastic Time-Inverted Lagrangian Transport model (hereafter STILT model) was used to simulate the 
hourly concentration footprint (Fasoli et al., 2018; Lin et al., 2003), which is estimated by releasing air particles at 
the receptor and tracking their movement backward in time and represents the sensitivity of the upstream source 
area to observations at the tower site (or receptor). Specifically, the footprint was calculated from the integration 
of released air particles and calculating their residence time in each grid box within the planetary boundary 
layer. Using the STILT model, we released 500 particles for each hour and tracked each particle location back in 
time for 7 days or until the particle left the rectangle domain (hereafter D-STILT, Figure 1b), which is centered 
at Shanxi province and covers an area with length around 2,000 km. The simulated hourly concentration foot-
print contains 7 days of atmospheric transport information, and represents the dynamic changed 168 footprints 
after 500 particles were released at the observation site. The WRF version 4.2.2 model was used to simulate 
high spatial-temporal resolution of meteorological fields to drive the STILT model. Two nested domains and a 
two-way feedback option were applied in WRF, with a spatial resolution of 27 km (outer nested domain, hereafter 
D1, Figure 1b) and 9 km (inner domain, hereafter D2), respectively. The outer nested domain covers eastern and 
central China, and the inner domain covers northern China, which was the largest anthropogenic CH4 and CO2 
hotspot in China. The physical schemes used in the WRF model are the same as those used in our previous studies 
(Hu et al., 2019, 2021).

2.2.2.  The a Priori CH4 and CO2 Flux

The a priori CH4 and CO2 fluxes are needed to simulate a priori enhancements that contain both anthropogenic 
and natural sources. The natural CH4 source is mainly from wetlands, and biological CO2 flux was emissions from 
biomass burning and net ecosystem exchange (NEE). The Emission Database for Global Atmospheric Research 
(EDGAR) provides anthropogenic CH4 and CO2 emissions at monthly averages with spatial resolution of 0.1°. 
We used the most recent v6.0 inventory for the year 2018 (Crippa et al., 2019; Janssens-Maenhout et al., 2020). 
Wetland CH4 flux is from the WetCHARTs ensemble mean with 0.5° spatial resolution using monthly averages 
(Bloom et al., 2017). The EDGAR CH4 inventory contains 22 different categories. The main sources are fugitive 
from coal mining (PRO_coal), waste water handling (WWT), and agricultural soils (AGS, mainly rice paddies). 
Considering that wetland CH4 flux in WetCHARTs includes rice paddies (main source as AGS) as one wetland 
type, we exclude AGS in EDGAR and assume that WetCHART contains all of the anthropogenic and natural 
wetland CH4 emissions. Biomass burning CO2 flux and NEE are from the Carbon Tracker assimilation system 
with 3-hourly averages and 1° spatial resolution. The EDGAR anthropogenic CO2 emissions contain 28 different 
categories. The main sources include power industry (ENE), combustion for manufacturing (IND), nonmetallic 
minerals production (NMM), and energy for buildings (RCO). Temporal profiles of the main categories were 
applied to CO2 to derive hourly varied emissions (Hu et al., 2022). No temporal profiles were applied to CH4 
emissions considering that coal mining accounted for >90% of CH4 emissions in the study region and does not 
have diurnal variations.

The enhancements contributed by each category and the source area are tracked as separate tagged tracers in the 
WRF-STILT framework. To quantify CH4 and CO2 enhancement contributions from different source regions, 
enhancement from all 11 cities in Shanxi province and surrounding four provinces as Inner Mongolia, Hebei, 
Henan, and Shaanxi (Figure 1b) will be simulated separately. To provide robust evaluations of bias in a priori 
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inventories, we also used more available inventories to compare with EDGAR v6.0 and posteriori emissions. 
They included Two different EDGAR versions (v4.0 and v4.3.2) and another independent coal mining CH4 inven-
tory (0.1° × 0.1°, Scarpelli et al., 2020), and four other different anthropogenic CO2 emissions (ODIAC version 
2020b (1 km × 1 km, Oda et al., 2018), PKU-CO2 (0.1° × 0.1°, Liu et al., 2015), Carbon Tracker 2019B (1° × 1°, 
Peters et al., 2007), MEIC (0.25° × 0.25° Li et al., 2017)) will also be compared with EDGAR v6.0. Note only the 
year 2014 is available for PKU-CO2 inventory, and year 2018 is available for other inventories.

2.2.3.  Representation Error Analysis

Representation error is defined as the model setup mismatch versus the true field conditions for both hori-
zontal and vertical resolutions (Agustí-Panareda et al., 2019; Wang et al., 2022). It also contains the observed 
representation error that is defined as the mismatch between point measurements and grid-cell-averaged values 
in models, which is usually caused by coarse spatial resolution of emissions and driving meteorological files 
(Gerbig et al., 2003). For example, aggregation errors are caused when aggregating heterogeneous fluxes from 
finer spatial resolutions into a coarser resolution. It can be expressed as the simulated enhancement difference 
in emissions resulting from using different spatial resolutions (Turner & Jacob, 2015; Zhao et al., 2009). The 
representation error can have a large influence when emissions are heterogeneously distributed, where the nearby 
higher (or lower) emissions in finer resolution inventory are smoothed to the regional average and can lead to a 
corresponding underestimation (or overestimation) of simulated enhancements (Wang et al., 2022). Theoretically, 
a higher spatial resolution flux map and corresponding footprint can better represent the inhomogeneity of point 
sources of anthropogenic emissions. Aggregation errors occur in urban areas, especially during the nocturnal 
period (0:00–06:00, local time) for stable boundary layer stratification. Under these conditions, atmospheric CH4 
(and CO2) enhancements can be more easily influenced by local emissions. Here, we will analyze the aggregation 
errors and quantify its influence on atmospheric concentration and emission inversions in Section 3.3.

2.3.  Inverse Modeling: Scale Factor Bayesian Inversion (SFBI) Method

We applied an SFBI method to interpret the tower-based CH4 (and CO2) observations in terms of quantitative 
constraints on their emissions. This Lagrangian inverse approach is an efficient way to evaluate bottom-up inven-
tories, based on atmospheric CH4 and CO2 concentration observations and simulation of these concentrations by 
using these a priori inventories (Kim et al., 2013; Miller et al., 2008). The relationship between observed and 
simulated tower CH4 and CO2 concentrations can be expressed as follows:

𝑦𝑦 = 𝐾𝐾Γ + 𝜀𝜀� (4)

where 𝐴𝐴 𝐴𝐴 is vector of observed enhancement (concentration minus background) for target gases, 𝐴𝐴 𝐴𝐴 corresponds 
to simulated enhancements from different categories or tagged area or both, 𝐴𝐴 Γ consists the a posteriori scaling 
factors (hereafter SFs) for each source components in 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 is the observing system error.

The optimal way to get a posteriori SFs is to minimize the cost function 𝐴𝐴 𝐴𝐴 (Γ) , which represents the error weighted 
mismatch between observed and simulated CH4 (and CO2) enhancements and mismatch between the a priori and 
posteriori SFs, the cost function 𝐴𝐴 𝐴𝐴 (Γ) is expressed as

𝐽𝐽 (Γ) =
1

2

[

(𝑦𝑦 −𝐾𝐾Γ)𝑇𝑇 𝑆𝑆−1
𝑒𝑒 (𝑦𝑦 −𝐾𝐾Γ) + (Γ − Γa)

𝑇𝑇
𝑆𝑆−1
𝑎𝑎 (Γ − Γa)

]

� (5)

where 𝐴𝐴 𝐴𝐴𝑒𝑒 and 𝐴𝐴 𝐴𝐴𝑎𝑎 are the observational and a priori error covariance matrices, and 𝐴𝐴 𝐴𝐴𝑒𝑒 consists of measurement 
and model errors. Each element of 𝐴𝐴 Γa is equal to 1. Therefore, the solution for minimizing this cost function and 
obtaining the posteriori SFs is to solve 𝐴𝐴 ∇Γ𝐽𝐽 (Γ) = 0 , more details can be referred in Kim et al. (2013) and Hu 
et al. (2019, 2022). The “averaging kernel” will be used to quantify the sensitivity of the retrieved emissions to 
their true values (Kim et al., 2013), with value of 1 representing the highest contribution and sensitivity, and value 
of 0 of the lowest.

2.4.  Constructions of Error Covariance in Bayesian Inversion Approach

We applied the same approach as previous studies (Chen et al., 2018; Griffis et al., 2017; Hu et al., 2013, 2019, 2022; 
Kim et al., 2013), which did not consider the off-diagonal elements of the error variance-covariance matrix. The 
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error covariance and state vector metrics in SFBI approach for observations (𝐴𝐴 𝐴𝐴𝑒𝑒 ) and a priori values (𝐴𝐴 𝐴𝐴𝑎𝑎 ) are 
specified as follows. The measurement errors lie in the accuracy of calibration strategy and background, where 
enhancements (y) are evaluated instead of concentration observations. Because our measurement system has 
high precision and was calibrated every 2 hr, here measurement errors mainly came from CH4 (and CO2) back-
ground. Based on comparisons of enhancements and background concentrations for CO2 and CH4 with different 
background sites (Section S5 and Table S1 in Supporting Information S1), a 10% relative uncertainty is assigned 
to measurement error. The model error contains two primary sources as representatives of released particles 
numbers (Sparticles) in STILT model, and uncertainties in meteorological field simulations (Smet) especially from 
wind speed, wind direction, and boundary layer height (hereafter PBLH). Following previous work, an uncer-
tainty value of 13% was assigned to Sparticles (Chen et al., 2018; Hu et al., 2022; Kim et al., 2013), and 20% was 
assigned to Smet based on comparisons with midday PBLH with Carbon Tracker simulations and evaluations of 
wind speed and directions (Gourdji et al., 2018; Kim et al., 2013).

Note our WRF-STLIT model setup can simulate enhancement contributions from different categories and regions 
as displayed below, but considering the limited ability of SFBI approach in resolving SFs for both categories 
and regions, we only derive posteriori SFs for the main emission categories following previous studies (Griffis 
et  al., 2017; Hu et  al.,  2019, 2022). For the uncertainty in the a priori flux, previous studies have compared 
different inventories and found the anthropogenic CH4 differences were found to vary between 50% and 200% 
(Han, Zeng, Oda, et al., 2020; Han, Zeng, Zhang, et al., 2020; Lin et al., 2021), and CO2 emission differences in 
Chinese industrial cities can reach to 200%. Because coal mining is the largest contributor to CH4 in TJM area, 
we applied a 3-element (coal mining, reset anthropogenic sources, and wetland) state vector in for constraining 
CH4 emissions. Considering the potential uncertainty of city scale coal mining CH4 emissions can reach to 200%, 
and also to analyze whether the derived posteriori SFs for coal mining CH4 emissions were sensitive to a priori 
uncertainty, we applied three uncertainties combination cases, where the uncertainty were 50% (Case 1), 100% 
(Case 2), 200% (Case 3) for coal mining, respectively. And all three cases assigned 200% for the rest anthropo-
genic categories and wetland which together only accounted for <10% of regional CH4 total emissions.

To constrain anthropogenic CO2 emissions, we first applied 4-element (ENE, NMM, others, biological sources) 
state vector and 3-element (ENE, others, biological sources) state vector. But our preliminary test results in TJM 
area indicated there should be missing of large CO2 hotspots that have not been considered in EDGAR v6.0 inven-
tory. Besides, results from above setups also indicated the spatial distributions of different anthropogenic CO2 
categories are not accurate. All these factors lead to the condition that there is not enough information from the 
observations to resolve many elements and the exact locations of missing CO2 sources, and anthropogenic CO2 
categories cannot be resolved by single factor Bayesian inversion approach in this study. Here, we finally choose 
to use a 2-element (anthropogenic sources, biological sources) state vector following the study by Hu et al. (2013) 
and Kim et al. (2013), which does not require the partition of all anthropogenic emissions into different sources. 
We found that the SFs were not sensitive to a priori uncertainty and finally choose 200% for anthropogenic CO2 
emissions and 100% for biological flux based on the concentration comparisons in Section 3.3.

3.  Results and Discussions
3.1.  Observed CH4 and CO2 Concentration Variations

We first evaluated the WRF model simulated meteorological fields (including T2m, RH, S↓, WS, and WD at 10 m) 
with observations at the Xiaodian station (Figure 1c). The comparisons showed relatively good WRF model 
performance (see Table S2 in Supporting Information S1) and indicate that the WRF simulated meteorological 
fields can be used to drive the STILT atmospheric transport for CH4 and CO2. Figure 2a shows hourly concentra-
tion observations of both CH4 and CO2 and reveals relatively strong seasonal patterns with CH4 and CO2 reaching 
maximum values from November to January. This pattern is likely driven by a combination of higher emissions, 
lower PBLH variations, and more stable boundary layer stratification during this period. Here, the local home 
heating period general occurred from 1 November 2018 to 31 March 2019, indicating higher CO2 emissions from 
coal and natural gas combustion. The seasonal concentration averages (enhancements are shown in parentheses) 
for CH4 were 2466.8 ppb (555.0 ppb), 2562.2 ppb (624.1 ppb), 2616.7 ppb (692.9 ppb), 2701.6 ppb (777.8 ppb) 
in spring, summer, autumn, and winter, respectively; and were 436.9 ppm (22.6 ppm), 431.4 ppm (26.1 ppm), 
453.5 ppm (44.6 ppm), 465.1 ppm (51.8 ppm) for CO2 during the same periods. The results demonstrate that 
CO2 enhancements in autumn and winter were >2 times that in spring. Further, these data also indicate that the 
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seasonality in CO2 flux was larger than for CH4 when considering that both gases were subject to similar atmos-
pheric transport processes and PBLH variations.

Note the enhancement ratio between two different gases is considered as their emission ratios (Tohjima et al., 2020; 
Turnbull et al., 2011, 2015; Vardag et al., 2015), we further displayed the relationship between observed midday 
CH4 and CO2 enhancement in Figure 2b, they show strong linear relationship (R = 0.78, P < 0.001) with slope of 
12.2 (±0.7) (ppb/ppm). The linear slope indicates the emission ratio between CH4 and CO2 was around 0.0122, 
this slope will be compared with model simulations to examine bias in the a priori emissions in Section 3.6.

To evaluate whether the CH4 and CO2 concentration was comparable with other cities, we further compared the 
annual averages of CH4 and diurnal averages of CO2 with some typical urban area in China (Beijing, Nanjing, 
Xianghe) and other countries including three cities (London, Baltimore/Washington, Los Angeles) for CH4 and 
four cities for CO2 (Salt Lake City, Los Angeles, Boston, and Indianapolis, Figure S2 and Section S2 in Support-
ing Information S1). The comparisons illustrate midday CO2 concentration at our observation site is one of the 

Figure 2.  (a) Time series of hourly CO2 and CH4 observations, and (b) scatter plots of observed CH4 and CO2 enhancement, each point is midday averages 
(12:00–18:00, local time), color bar indicates the corresponding months for each point.
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highest and only slightly lower than Beijing. Given the lack of observed diurnal CH4 variations reported in previ-
ous studies, we compared our results to annual averages. In these previous studies, all CH4 observations were 
calibrated frequently with standard gases that can be traceable to NOAA/GML (NOAA Global Monitoring Labo-
ratory) standards. We believe their absolute accuracy is better than 1 ppbv, which can be the largest systematic 
bias. Considering the magnitude of CH4 enhancements at our site is about 2–3 times larger than other major cities, 
the systematic bias could not explain the large enhancement difference between our study and above-mentioned 
cities. These comparisons indicate strong CO2 and CH4 emissions from the TJM area compared to other major 
cities.

3.2.  The a Priori Flux and Simulated Source Footprint

3.2.1.  The a Priori CH4 and CO2 Flux

The a priori anthropogenic CH4 emissions from EDGAR v6.0 and WetCHART wetland emissions are displayed in 
Figures 3a and 3c. The main anthropogenic sources are located in the central and southern Shanxi province. Wetland 
emissions were relatively low when compared with the anthropogenic emissions. We also show the satellite-based 
CH4 column concentration data in Figure 3b. These data show strong coherency (R = 0.36, P < 0.001, Figure 
S6 in Supporting Information S1) with the EDGAR v6.0 CH4 inventory in Shanxi. The spatial distribution of the 
high CH4 column concentration data (>1,900 ppb) is also consistent with the location of coal mines (Figure S3 in 
Supporting Information S1), and indicates that coal mining CH4 dominated the regional atmospheric CH4 distri-
butions. The a priori anthropogenic CO2 emissions from EDGAR v6.0 and ODIAC (other inventories not shown), 
and NEE are displayed in Figures 3d–3f, respectively. The annual averaged NEE was negligible when compared 
with the anthropogenic emissions. However, we should also note the hourly NEE may also be comparable with 
anthropogenic emissions for some specific days in summer which will be displayed below. Further, CO2 emissions 
from within the TJM area represent a significant hotspot (i.e., values are in the upper 10% percentile).

Considering the EDGAR inventories have been widely used as a priori emission in many previous studies, 
with the highest spatial resolution in China for both CH4 and CO2 emissions, and the spatial distributions of 
satellite-based CH4 concentrations also showed high consistence with EDGAR emissions in Shanxi province, 
indicating the general good spatial distributions of anthropogenic CH4 especially for coal mining. Hence, only 
EDGAR v6.0 inventory was used in inversion for both CO2 and CH4 emissions in this study.

The EDGAR v6.0 anthropogenic CH4 and CO2 emissions from the top five emission sources for both TJM area 
and Shanxi province are displayed in Table 1. We found that CH4 emissions from coal mining accounted for >90% 
of the total anthropogenic CH4 emissions in both the TJM area and Shanxi province. The second most important 
source was waste water, which accounted for <4% of emissions. These a priori emissions proportions indicate that 
the CH4 enhancements at our observation site are dominated by coal mining CH4 emissions. We also calculated the 
coal mining CH4 emissions in Shanxi province using a different inventory available for the year 2016 by Scarpelli 
et al. (2020), where the emission was 7.4 × 10 6 tons and 88% of 8.4 × 10 6 tons for EDGAR v6.0 in the same year. 
Previous studies have found large discrepancies in the coal mining CH4 emissions and its mean EF for Shanxi 
province, with observed mean EF values ranging from 5.6 to 12.7 m 3 CH4/ton coal and largely varied from 3.3 to 
22.1 m 3 CH4/ton coal for different coal quality types within Shanxi (Table S3 in Supporting Information S1). We 
derived the EFs by using three different EDGAR versions (v4.0, v4.3.2, v6.0) in the year 2010 (the most recently 
released versions for all three EDGAR versions). The EFs decreased from 16 m 3 CH4/ton coal for v4.0 to 12 m 3 CH4/
ton coal for v6.0 in the same year 2010, note most of EFs applied by EDGAR inventories are IPCC recommended 
default values, but EGDRA will update them for the regions with localized EFs (Solazzo et al., 2021). Hence, we 
assume that such discrepancies will lead to large uncertainty in the estimated CH4 emissions by bottom-up methods.

The EDGAR v6.0 CO2 emissions from the power industry accounted for ∼60% of the total anthropogenic CO2 
emissions in TJM area and 50% for Shanxi province, indicating large emissions from coal burning-based power 
stations. The second and third largest sources were cement production and combustion for manufacturing. We also 
calculated the annual anthropogenic CO2 emissions from EDGAR v6.0, ODIAC, MEIC, and PUK-CO2 invento-
ries, which were 5.1 × 10 8 tons, 3.2 × 10 8 tons, 4.9 × 10 8 tons, and 3.9 × 10 8 tons for Shanxi province, respec-
tively. The anthropogenic CO2 emissions in TJM area were 9.3 × 10 7 tons, 6.2 × 10 7 tons, and 7.8 × 10 7 tons from 
EDGAR v6.0, ODIAC, and PKU-CO2. Here, the MEIC and Carbon Tracker emissions are not shown because 
of its coarse spatial resolution at the city scale. As evaluated by Han, Zeng, Oda, et al. (2020) and Han, Zeng, 
Zhang, et al. (2020) for the anthropogenic CO2 emissions in Shanxi province based on seven different inventories, 
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emissions varied from ∼3.0 × 10 8 tons to ∼7.5 × 10 8 tons in year 2012 by 2.5 times, which also indicated rela-
tively large uncertainty in Shanxi province and even larger uncertainty at the city scale.

3.2.2.  Tower-Based Concentration Footprint and Source Regions

The WRF-STILT simulated footprint represents potential source area variations for each hourly observation. 
The climatological source footprint was obtained by averaging the hourly values over the whole year (Figures 3g 

Figure 3.  (a) EDGAR v6.0 CH4 emissions, units: log10(mol m −2 s −1), (b) column-averaged CH4 concentration from Sentinel satellite retrievals, units: ppb, (c) wetland 
CH4 emissions, units: log10(mol m −2 s −1), (d) EDGAR v6.0 CO2 emissions, units: log10(mol m −2 s −1), (e) ODIAC CO2 emissions, units: log10(mol m −2 s −1), and (f) 
annual averaged net ecosystem exchange (NEE), units: mol m −2s −1, (g) annual average of hourly footprint for CO2/CH4 observation site, (h) enlarged figure of footprint.
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and 3h, enlarged on the right). The most intense source footprint area (i.e., values greater than 10 −3 ppm m 2 s/
μmol (displayed in yellow)) includes the TJM area. Further, the tower-based observation site is located in the 
middle of TJM area, indicating that our CH4 and CO2 observations are representative of the anthropogenic signals 
originating from within the study domain (Figures 1a and 1b).

To quantify the source area representation of observed CH4 and CO2 concentration, we calculated how many 
hours were needed to accumulate different proportions of total enhancements, where simulated CO2 enhance-
ments were used because they reflect the hourly variation of emissions. The temporal dynamics of the cumulative 
anthropogenic CO2 enhancements are shown in Figure S4 in Supporting Information S1 for all four seasons and 

are discussed in details in Section S3 in Supporting Information S1. There 
are key differences in the time of day  and time of year required to accumulate 
the same enhancement proportion. The average time to accumulate a 50% 
of total enhancement was 3 hr in near midnight and 6–12 hr near midday 
for all seasons. We further used annual wind speed average and the accu-
mulated time to calculate the source area by atmospheric transport, where 
observed wind speed of 2.6 m/s in the midnight and 3.5 m/s in the midday 
were used. Results indicate that the 50% enhancement source area was with 
radius of 28 km in midnight and 76–152 km in midday. The midday radius 
was comparable with the size of TJM area, where the length and width varied 
by 100–200  km, but the 28-km radius for midnight only represents local 
emission sources.

To further quantify the enhancement contributions from different source 
regions (i.e., TJM area, Shanxi province, and other provinces), enhancements 
were tracked as separate tagged tracers within the WRF-STILT framework. 
The daily variations are displayed in Figure S5 in Supporting Information S1 
and the monthly mean values are shown in Figures 4a and 4b. We found that 
the CH4 enhancement (CO2 shown in parentheses) proportions had a strong 
seasonal pattern, which increased from the lowest value 74.6% (59.6%) in 
summer to a maximum of 93.1% (82.3%) in winter for Shanxi province's 
contributions and from 38.2% (41.0%) to 62.6% (64.3%) for the TJM area. The 
annual mean CH4 enhancement proportions were 85.0%, 1.3%, 1.7%, 2.6%, 
and 1.9% for Shanxi, Inner Mongolia, Hebei, Henan, and Shanxi province, 
respectively. The CO2 enhancement proportions were 71.6%, 5.2%, 4.5%, 
4.2%, and 3.7% for corresponding provinces. The TJM area accounted for 
51.8% (54.5%) of the CH4 and CO2 enhancements. Here, Taiyuan accounted 
for 36.8% (35.3%) and Jinzhong accounted for 15.0% (19.2%).

3.3.  Representation Error Analysis

Before constraining the anthropogenic CH4 and CO2 emissions, we assessed 
the representation errors in the model simulation and their potential influ-
ence on derived posteriori SFs. Instead of using all-day observations in the 

Table 1 
The a Priori Anthropogenic CO2 and CH4 Emissions for TJM Area and Shanxi Province in Year 2018 From EDGAR v6.0 Inventory

CH4 (×10 3 tons) CO2 (×10 6 tons)

PRO_COAL WWT SWD_LDF RCO ENF Others Total ENE NMM IND TRO RCO Others Total

Taiyuan Emission 642.1 27.8 19.6 9.1 3.0 8.1 709.7 31.0 5.2 5.2 2.9 2.3 4.6 51.2

Proportion 90.4% 3.9% 2.8% 1.3% 0.4% 1.1% 100.0% 60.6% 10.1% 10.1% 5.6% 4.6% 9.0% 100.0%

Jinzhong Emission 1584.8 17.6 9.2 6.5 4.2 35.0 1657.5 25.3 5.7 2.5 0.5 2.1 5.3 41.3

Proportion 95.5% 1.1% 0.6% 0.4% 0.3% 2.3% 100.0% 61.0% 13.8% 6.0% 1.3% 5.1% 12.8% 100%

Shanxi Emission 8325.7 260.3 142.0 92.6 107.8 134.4 9062.7 267.3 65 67.7 17.9 20.6 720.4 510.7

Proportion 91.9% 2.9% 1.6% 1.0% 1.2% 1.5% 100.0% 52.3% 12.7% 13.3% 3.5% 4.0% 14.1% 100.0%

Figure 4.  Monthly mean enhancement contributions from Taiyuan, Jinzhong, 
Shanxi province, and other regions for (a) CH4 and (b) CO2.
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atmospheric inversion study, previous studies have found that atmospheric transport simulations are likely more 
reliable for greenhouse gas concentration during midday compared to early morning or nocturnal periods. For 
example, the evaluation of five different Eulerian atmospheric transport models with multiple observation sites 
indicated that the model performed better in the daytime because of well-mixed atmospheric conditions than under 
stable nighttime conditions (Geels et al., 2007). In Section S4 and Figure S7 in Supporting Information S1, we 
quantified and discussed the representation error caused by both spatial resolution (aggregation error) and vertical 
resolution between midday and midnight. We first calculated the relative difference of simulated midday anthropo-
genic CO2 enhancement between using 0.1° and 1° EDGAR v6.0 CO2 emissions, which were 7.9%, 4.4%, 19.1%, 
and 20.2% for spring, summer, autumn, and winter, respectively. Similarly, the differences were 0.8%, 26.9%, 
11.5%, and 19.0% for simulated anthropogenic CH4 enhancements. The relative difference of simulated midnight 
anthropogenic CO2 enhancements between using 0.1° and 1° EDGAR v6.0 emissions were 1.5–2 times and were 
up to 6 times for CH4 enhancement simulations. The midday relative difference was much smaller than using 
midnight data and indicate that the midday data can substantially minimize the aggregation error. Note although 
much finer spatial resolution of emissions (i.e., 1-km spatial resolution of ODIAC inventory) can better represent 
spatial distributions of CO2 emissions, it still needs the same spatial resolution of WRF-STILT model simulated 
footprints, which is >100 times of computation resources than using 0.1°. Here, we only compared the aggregation 
errors by using 0.1° and 1° to keep the balance between deriving conclusions and computation cost.

The relatively large differences at midnight are likely caused by: (a) there were strong point sources within a 1° 
radius (∼100 km) of the observation site (Figure 1). Aggregation from 0.1° to 1° emissions will act to smooth 
higher emissions that is much further/closer with observation site to regional averages; (b) lower PBLH and 
stable stratification at midnight will assign larger footprint weight to emissions sources that are closer to the 
tower; (c) the STILT model assumes that all emissions are surface sources. However, there can be strong point 
sources (i.e., stack height and subsequent plume rise height for coal burning power station CO2 and coal mining 
CH4 emissions), which will lead to overestimation of simulated concentrations when the PBLH is below the 
emission height. But the emission height is less important when atmospheric mixing is strong during midday 
and the PBLH is considerably higher than the stack height (Brunner et al., 2019). A recent study comparing 
emissions with or without using emission height in WRF-STILT found that their differences were negligible near 
midday (Maier et al., 2022). Based on these analyses, we conclude that CH4 and CO2 observations in the midday 
have smaller representation errors and will be used here for comparison with observed tower concentrations to 
constrain the emissions.

3.4.  Comparisons Between Observed and Simulated Midday CH4 and CO2 Concentrations

Time series of observed and simulated midday CH4 and CO2 concentrations are shown in Figures 5a and 5b. 
In general, the annual midday averages for observations and simulations were 2340.9 and 2301.5 ppb for CH4, 
436.7 and 422.7 ppm for CO2. The statistical analyses of R (correlation coefficient), RMSE (root mean square 
error), and MB (mean bias) were 0.41, 384.7, and 39.5 ppb for CH4 and were 0.69, 22.4, and 14.0 ppm for CO2. 
The lower R for CH4 than CO2 and the more scattered enhancements found in Figures 5c and 5d indicate the 
spatial heterogeneity of CH4 emissions is not as well resolved for CO2 in the EDGAR (0.1° spatial resolution) 
inventory. More detailed and updated information are needed to further improve its spatial resolution. Previous 
studies also found large bias in the numbers and locations of coal mining for present inventories in China (Lin 
et al., 2021; Zhu et al., 2017). The simulated CO2 concentrations (and enhancements) were much smaller than the 
observations as displayed in Figure 5b. CH4 did not show such overestimate/underestimate. Regression slopes of 
observed and simulated enhancements were 1.12 ± (0.11) for CH4 and 0.55 ± (0.04) for CO2 (Figures 5c and 5d), 
also supporting that the simulated CO2 enhancement was underestimated. Such large discrepancy for CO2 could 
be caused by the following factors: (a) The PBLH was overestimated in the WRF-STILT model and caused the 
underestimation of CO2 simulations; (b) an underestimation in CO2 emissions in the a priori EDGAR inventory 
or an overestimation of CO2 uptake by plants; and (c) a combination of both factors.

To help address these concerns, CO2 simulations from the Carbon Tracker model was added to Figure 5b and 
PBLH simulations using two models were also compared in Figure S8 in Supporting Information S1. Here, we 
used Carbon Tracker because it is widely used to simulate global CO2 distributions. Further, it is an Eulerian 
atmospheric transport model, which takes a different approach than the STILT model. Hence, the comparison of 
two different models with observations can provide us with a robust evaluation of potential bias in the a priori 
emissions and performance of model simulations. These comparisons indicate that: (a) Both WRF-STILT and 
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Figure 5.  Time series of observed and simulated midday (a) CH4 concentrations, (b) and CO2 concentrations, note CO2 
simulations from Carbon Tracker model is also displayed, and each dot represent daily averages; (c) scatter plots between 
observed and simulated CH4 and (d) CO2 using data excluded statistical outliers (>98th percentile in simulations), uncertainty 
values indicate 95% confidence limits; and simulated midday enhancement components for (e) CH4 and (f) CO2 with 
anthropogenic and biological enhancements displayed.
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Carbon Tracker simulations show similar daily variations with CO2 observations, indicating these models can 
well simulate weather patterns and the atmospheric transport process. (b) The intermodel comparisons only show 
slightly higher CO2 simulation in WRF-STILT than Carbon Tracker. This is likely because each Carbon Tracker 
grid cell represents averages of 2° × 3° area, such that the aggregation error will smooth out the higher emissions 
within the Taiyuan-Jinzhong urban area (with area of <0.5° × 0.5° in Figure 1a). The grid-cell resolution in 
WRF-STILT is 0.1° × 0.1° and can better resolve the spatial distribution of anthropogenic emissions. Further, 
because only midday averages are used, the aggregation error is minimized and cannot lead to such large under-
estimation. (c) The PBLH in both models showed high consistency, although the WRF simulated PBLH was 
lower than Carbon Tracker for winter. However, this would be expected to result in higher CO2 concentrations 
and cannot explain the underestimation of CO2 value. (d) The comparisons between observed and simulated CO2 
enhancement illustrated underestimation of simulated midday CO2 enhancement occurred in most study period of 
four reasons for both models, even though the source contribution from TJM area changed from ∼10% to ∼100% 
(Figure 4 and Figure S7 in Supporting Information S1, discussed above), these analysis indicate such bias exist 
when air flows from different directions and represent common bias in a priori emissions at regional scale.

We also displayed the enhancement components from each category for both CH4 and CO2 (Figures 5e and 5f). 
These results show that anthropogenic sources dominated the seasonal variations compared to wetland source of 
CH4 and NEE for CO2. Simulated annual a priori CH4 enhancement averages were 374.6 ppb for anthropogenic 
sources and 1.6 ppb for wetlands. Simulated annual a priori CO2 enhancement averages were 12.7 ppm for anthro-
pogenic sources and −0.7 ppm for NEE. Based on the above analysis, we concluded that the underestimation of 
simulated CO2 concentration throughout the year cannot be explained by PBLH biases, but is more likely caused 
by the underestimation of anthropogenic CO2 emissions in the a priori inventory. In the next section, we will use 
the SFBI method and atmospheric CH4 and CO2 observations to constrain their emissions and derive the poste-
riori emissions.

3.5.  Constraint of Anthropogenic CH4 and CO2 Emissions

The time series of hourly wind direction Figure 1e indicate large hour-to-hour variability. Because our site is 
located near the center of the TJM area, the observations represent contributions from different sources with 
varied wind directions. Further, as shown in Figure 5a, the underestimation of CO2 exists for the majority of the 
study period, indicating the underestimation of CO2 emissions for the region. The simulated a priori CH4 concen-
trations also showed relatively good agreement from March to October, and an overestimation from November to 
February (Figure 5b). Based on the above analyses, we have decided to constrain CH4 and CO2 emissions at  the 
seasonal scale.

In the SFBI method, hourly CH4 and CO2 concentration observations at midday were used to constrain anthro-
pogenic sources in each season. As discussed in Section  2, three cases of uncertainty combinations will be 
used to provide robust evaluation of emissions inversion. Here, the derived seasonal posteriori SFs of three 
cases for coal mining, other anthropogenic categories, and wetlands are displayed in Table S4 in Supporting 
Information S1. The high averaging kernel (>0.8) for coal mining and low averaging kernel (<0.1) for wetland 
indicates atmospheric CH4 observations were more sensitive to coal mining emissions than wetland. To provide 
a robust constraint on the SFs, we averaged the SFs from all three cases to estimate the final posteriori SFs. The 
uncertainties were represented by the range of SF estimates. The posteriori SFs were 0.94(±0.06), 1.08 (±0.08), 
0.80(±0.23), and 0.80(±0.31) for coal mining in spring, summer, autumn, and winter, respectively; and were 1.86 
(±0.07), 1.44 (±0.09), 1.02 (±0.15), and 0.96(±0.08) for the other categories.

The posteriori results only show slight seasonality for anthropogenic CH4 emissions, because this area is domi-
nated by fugitive CH4 from coal mining. Further, home heating in winter only played as small role in the total 
regional CH4 emissions. After resimulating CH4 concentrations by applying these posteriori CH4 emissions, 
the regression slopes for CH4 concentrations decreased from 1.12 (±0.11) to 0.92 (±0.08), and the y-intercept 
changed from −354.3 to 100.4 ppb (Figure 6a). The time series comparisons between a priori and posteriori 
CH4 concentrations also showed that the overestimation of a priori emissions from November to February was 
significantly improved following the inverse optimization (Figure S9a in Supporting Information S1). Further, 
the RMSE decreased from 384.5 to 339.8 ppb. After applying these SFs, the derived annual posteriori anthropo-
genic CH4 emissions for the TJM area was 21.9(±4.4) × 10 5 tons, which was 7.6% lower than the a priori emis-
sions of 23.7 × 10 5 tons. The posteriori CH4 emission from coal mining was 20.2(±4.3) × 10 5 tons, 9.4% lower 
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than the a priori emission of 22.3 × 10 5 tons. We then divided emission by the coal production of 1.22 × 10 8 tons 
in 2018 for this region, and the posteriori coal mining EF was 23.2(±4.9) m 3 CH4/ton coal. Here, the coal 
production was obtained from local government, which conducted provincial policies as “consolidation to large 
coal mines” and “phase out of small coal mines” to increase coal production efficiency (Zhang et al., 2022), but 
some small coal mines have been frequently reported still under operation by local news. It indicates the real 
coal production may be slightly higher than public data and EF can be slightly smaller than 23.2(±4.9) m 3 CH4/
ton coal.

The derived seasonal posteriori SFs for anthropogenic CO2 emissions were 1.70 ± 0.02, 1.60 ± 0.01, 1.59 ± 0.05, 
and 1.56  ±  0.09 in spring, summer, autumn, and winter, respectively. And SFs for NEE were 0.89  ±  0.07, 
0.43 ± 0.02, −0.40 ± 0.31, and 1.96 ± 0.87 in corresponding seasons. The posteriori SF of NEE in fall indicated 
the sign of a priori Carbon Tracker NEE in our study region is wrong, and also with large bias in other seasons. 
The SFs for anthropogenic emissions indicate slight seasonal variations, where emissions in winter were the 
lowest. We hypothesize that the reduced industrial emissions from factories during the traditional Chinese spring 
festival resulted in decreased fossil fuel consumption. To evaluate whether these SFs improved the CO2 emission 
estimates, we resimulated CO2 concentration by using the posteriori anthropogenic/biological emissions and 
compared them with the CO2 observations. These results indicate the posteriori CO2 concentration simulations 
largely improved when compared with using the a priori emissions (Figure  6b). The RMSE decreased from 
22.4 to 10.6 ppm, MB decreased from 14.0 to 5.6 ppm. The SFs calibrated the underestimation of simulated 
CO2 concentrations. Here, the slope improved from 0.59 (±0.04) to 0.82((±0.04), the y-intercept decreased, 
and the scatter plots show less scatter (Figure 6b). The time series comparisons between a priori and posteriori 
CO2 concentrations also showed that the underestimation of a priori emissions was calibrated reasonably well 
across the whole year following the inverse optimization (Figure S9b in Supporting Information S1). Based on 
these derived SFs for anthropogenic emissions, the posteriori annual anthropogenic CO2 emissions for TJM area 
were 14.9(±0.4) × 10 7 tons, which was 60.2% higher than the a priori EDGAR v6.0 inventory. Considering the 
a priori anthropogenic CO2 emissions in TJM area were 9.3 × 10 7 tons, 6.2 × 10 7 tons, and 7.8 × 10 7 tons from 
EDGAR v6.0, ODIAC, and PKU-CO2 inventories, our results show the underestimation was common among all 
available inventories, and indicate some large emission sources and hotspots are missing in recent inventories 
for this industrial region. Furthermore, to quantify the potential uncertainty of background concentration on 
emission inversions, we also compared the CO2 and CH4 concentration at WLG background site with other three 
backgrounds in different directions. The results indicated the uncertainty was within 5% at the annual averages for 
both CO2 and CH4 emissions, as discussed in details in Section S5, Table S1, and Figures S10–S12 in Supporting 
Information S1.

Figure 6.  Linear regression between observed and simulated (a) CH4 and (b) CO2 concentrations, simulations by using the a priori and a posteriori emission were both 
compared with observations, the uncertainty values indicate 95% confidence limits.
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3.6.  Further Evaluation of the a Priori Emissions

The comparisons of seasonally averaged diurnal averages between observations and simulations are displayed 
in Figure 7. The model simulations in midday illustrated similar diurnal patterns but with different amplitude 
for CO2. And simulations for CH4 showed overall consistency with the observations. The derived ratios between 
observed and simulated midday CO2 enhancements were 1.88(±0.40), 1.81(±0.46), 2.26(±0.34), and 2.01(±0.31) 
in spring, summer, autumn, and winter, respectively, also indicating large underestimation of anthropogenic CO2 
emissions as found by SFBI method. Further, the scatter plots between CO2 and CH4 concentration (and enhance-
ment) for both observations and simulations are shown in Figure 8. Each observation represents different source 
areas and the linear relationship illustrates the general emission ratio between CO2 and CH4. We found that the 
regression slopes were 0.085(±0.05) for observed CO2 and CH4 concentration ratio, and 0.082(±0.05) for their 
enhancement ratio. For the simulations, the slopes were 0.036(±0.02) for concentration and 0.032(±0.02) for the 
enhancement ratio. Both are close to the emission slope of 0.028 (±0.02) derived from the EDGAR a priori inven-
tory (Figure 8b). These large discrepancies between observed and simulated CO2 and CH4 slopes also indicate 
large bias for the a priori anthropogenic CO2 emissions.

3.7.  Comparisons With Previous Studies

The comparison between the a priori EDGAR v6.0 and posteriori emissions is displayed in Figure 9 for TJM 
area. It illustrates that the posteriori emissions for coal mining and total anthropogenic CH4 emissions were 
92.4% and 90.6% of a priori EDGAR v6.0 inventory. Overall, there are only a few available atmospheric inversion 
studies for constraining coal mining CH4 emissions in China. Miller et al. (2019) and Chen et al. (2022) used 
satellite observations for China, which included Shanxi province. Lu et al. (2021) and Zhang et al. (2022) used 
both satellite and tower-based observations to constrain CH4 emissions. The spatial resolutions for these studies 
were 2.0° × 2.5° latitude-longitude, 0.25° × 0.3125°, 4° × 5°, and 0.5° × 0.625°, respectively. Zhang et al. (2022) 
used seven atmospheric CH4 sites in China (site locations were displayed in Zhang et al. (2022)), and even the 
closest atmospheric CH4 tower site (SDZ site) was ∼500 km (5°) from the TJM area. The concentration footprint 
of a tall tower based on our WRF-STILT model simulations indicates that the 50% enhancement source area was 
within about 100 km. Hence, we believe that the observation site used in our study is the most sensitive to both 
CH4 and CO2 emissions within the TJM area.

Among these previous studies, only Zhang et  al.  (2022) provided the a priori and posteriori CH4 emissions 
from different source categories. We examined the ratio between the posteriori and a priori coal + gas + oil 

Figure 7.  Diurnal averages of observed and simulated concentrations in (a) spring, (b) summer, (c) autumn, (d) winter for CO2, and (e) spring, (f) summer, (g) autumn, 
(h) winter for CH4.

 21698996, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037915 by Y
ale U

niversity, W
iley O

nline L
ibrary on [28/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

HU ET AL.

10.1029/2022JD037915

17 of 22

CH4 emissions for Shanxi province and TJM area. We believe their results for Shanxi province were mainly 
constrained by the satellite observations (not the tower observations i.e., when considering the footprint of the 
tower and sensitivity of a priori emissions). We found that the derived ratio was ∼1 with slight spatial variations 
(Figure S13 in Supporting Information S1). This supports relatively good agreement at the regional scale for CH4 
emissions. Overall, our study in the central Shanxi is the first one that combined tower-based CH4 concentration 
observations to constrain CH4 emissions from coal mining in China with a much finer spatial resolution of 10 km 
and our results showed high coal mining EF at TJM area and no significant bias in anthropogenic total and coal 
mining CH4 emissions.

To evaluate whether the derived coal mining EFs for these areas was comparable with other regions in China, we 
have derived the a priori EF for Shanxi and all of China and compared them with previous studies (Table 2 and 
Table S1 in Supporting Information S1). The posteriori EF for the TJM area was 23.2(±4.9) m 3 CH4/ton coal, and 
was close to the high CH4-content coal EF (22.1 m 3 CH4/ton coal), but 7 times greater than the low CH4-content 
coal EF (3.3 m 3 CH4/ton coal) for Shanxi province as reported by Sheng et al. (2019). This posteriori EF was ∼2 
times the Shanxi average and 3 times the national average when compared with previous “bottom-up” observa-
tions (Lin et al., 2021; Liu et al., 2021; Sheng et al., 2019), indicating large spatial inhomogeneity in coal mining 
EFs in China's largest coal production province.

Figure 8.  (a) Comparisons of observed and simulated CH4:CO2 enhancements, (b) emission ratio between CO2 and CH4 with different radius of source area in EDGAR 
v6.0 inventory, (c) comparisons of observed and simulated CO2:CH4 concentrations, and (d) CO2:CH4 enhancement.
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Some previous studies that conducted local observations in China reported 
EFs in Shanxi were 6.5–7.0  m 3  CH4/ton coal (Gao et  al.,  2020; Zhu 
et  al.,  2017), which is about half the EF in the EDGAR v6.0 inventory. 
Although the comparisons in the TJM area suggested overall good agreement 
at the local scale in the EDGAR v6.0 inven tory, our single observation site 
cannot represent coal mining EFs for the entire Shanxi province because of its 
high spatial inhomogeneity. Besides, as mentioned before that the available 
CH4 EFs from underground coal mining for China (including Shanxi prov-
ince) were mainly based on nationwide measurements prior to 2006 from 
∼800 underground mines, and were highly spatially heterogeneous (Sheng 
et al., 2019; Zhu et al., 2017). Besides, the observations in a few mines may 
not be suitable to represent averages at regional or local scales as found in this 
study. Furthermore, these previous EFs cannot reflect EFs changes by coal 
mining technology and government policy (i.e., “consolidation to large coal 
mines” and “phase out of small coal mines”) related EFs changes in recent 
years (Zhang et al., 2022).

We highlight the area with low CH4-content coal should also be evaluated 
to better understand the spatial inhomogeneity of coal mining CH4 EFs. A 
denser atmospheric CH4 observation network in Shanxi province would be 
need to better resolve its spatial inhomogeneity for coal mining CH4 EFs. A 
new CH4 observing network is under construction and will be implemented 

in our future work. Note although TROPOMI observations have not been used in CH4 emission inversion, we also 
emphasize the use of satellite observations are essential in resolving the spatial inhomogeneity of greenhouse gas 
emissions especially for hotspots for CH4 and CO2.

As mentioned above, the total anthropogenic and coal mining CH4 emissions in China are still subject to consid-
erable debate, not only between “top-down” atmospheric inversions and “bottom-up” inventories, but also among 
different inventories (i.e., EDGAR v5.0, PKU-CH4 v2, IEA). The inversion study by Miller et al. (2019) stated 
that total anthropogenic CH4 emissions increased after 2000 at rate of 1.0–1.2 × 10 6 tons/year and kept increas-
ing from 2010 to 2015 at a similar rate. This increase was mainly caused by coal mining emissions. However, 
the comparisons between six inventories illustrated the opposite decreasing trends of coal mining emissions 
from 2010 to 2016. The coal mining CH4 emissions then reversed to increasing trends  that were mainly caused 
by increased demand for coal instead of slightly decreasing EFs. And coal production decreased from highest 
4.0 × 10 9 tons in 2012 to the lowest 3.4 × 10 9 tons in 2016 by 15%, and national mean EF only deceased from 
9 m 3 CH4/ton coal to 8 m 3 CH4/ton coal from 2010 to 2020 (Liu et al., 2021; Peng et al., 2016; Sheng et al., 2019). 
Our findings suggest that the estimation of coal mining CH4 emissions at the regional scale, using only a single 
SF and without careful treatment of inhomogeneity, can potentially bring large biases.

Contrary to CH4, comparison for CO2 shows that state-of-the-art inventories (EDGAR v6.0, ODIAC, PKU-CO2) 
considerably underestimated anthropogenic emissions by 61%. For the SFBI method, the linear regression slope 
between observations and posteriori midday concentration was 0.82 ± 0.06. This indicates that the underestima-
tion in the a priori inventory has not been fully calibrated. Therefore, the true emissions are expected to be slightly 

higher than the SFBI result. Furthermore, the comparisons also illustrated the 
underestimate commonly exists in all present inventories and that some large 
emission sources are missing in the inventories for this heavily industrialized 
urban area.

There are a few previous studies conducted at the city scale or regional 
scale (i.e., in Nanjing and Nanchang), which showed less than a 20% bias 
in inventories (Hu et al., 2021, 2022). The extremely large SFs for the TJM 
area reveal large underestimation in high-density industrialized cities. A 
previous study using a “bottom-up” approach that compared eight inven-
tories in Beijing-Tianjin-Hebei region found the relative difference was 
twofold in almost all industrial cities. Further, emissions from the national 
database inventories (i.e., EDGAR, ODIAC) were 53%–75% lower than 

Figure 9.  Anthropogenic emission comparisons between the a priori and 
posteriori emissions (SFBI: scale factor Bayesian inversion) for (a) CH4 and 
(b) CO2.

Table 2 
Comparisons of Coal Mining EF for Between a Priori and Posteriori 
Results, Notes the a Priori Results was Derived From EDGAR v6.0 
Inventory

China  
(a priori)

Shanxi  
(a priori)

Taiyuan-
Jinzhong 
(a priori)

Taiyuan-
Jinzhong 

(posteriori)

CH4 emissions (×10 5 tons) 201.1 84.5 23.7 20.2(±4.3)

coal production (×10 8 tons) 35.46 8.93 1.22 1.22

EF (m 3 CH4/ton coal) 7.9 13.3 26.2 23.2(±4.9)
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provincial-level data estimated emissions (i.e., CHRED; MEIC) in the high-emitting industrial cities (Han, Zeng, 
Zhang, et al., 2020). Our findings provide independent support from the perspective of a “top-down” approach 
for this large underestimation in a heavily industrialize city in Northern China, and suggest atmospheric CO2 
concentration observations are urgently needed to monitor the true emissions from industrial cities.

4.  Conclusions
To evaluate the potential CO2 and CH4 emission biases at the largest coal mining CH4 emission region in China 
and one of the largest CO2 emission regions, the WRF-STILT model was coupled with the most recent EDGAR 
v6.0 inventory to simulate the a priori concentration and then applied SFBI method to evaluate and constrain 
their emissions for TJM area. We found that (a) the simulated a priori CH4 concentrations showed much better 
agreement with observations than CO2 concentrations, where the regressions slope was 1.12 ± (0.11) for CH4 
but 0.59 ±  (0.04) for CO2, indicating the a priori CO2 emission was largely underestimated. (b) The derived 
posteriori anthropogenic CH4 emissions were 92.5% of the a priori emissions, where CH4 fugitive from coal 
milling accounting for 92.7% of total anthropogenic emissions. The derived CH4 EF from coal mining was 
23.2(±4.9) m 3 CH4/ton coal, close to the default value of high CH4-content coal but twofold greater than the 
province average, indicating large spatial inhomogeneity in coal mining CH4 EFs for China's largest coal produc-
tion area. (c) Finally, the posteriori CO2 emissions were nearly 1.6-fold of the a priori emissions, illustrating some 
large hotspots were missing in this industrial city.
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(Peters et al., 2007) can be obtained from https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/. The 
STILT model (Lin et al., 2003) can be downloaded from http://www.stilt-model.org/.
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