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Abstract: Afforestation activities in the Kubuqi Desert, Inner Mongolia, China, have substantially
increased tree and shrub coverage in this region. In this study, the response of the surface temperature
to afforestation is simulated with the Weather Research and Forecasting model. The surface
temperature changes are decomposed into contributions from the intrinsic surface biophysical effect
and atmospheric feedback, using the theory of intrinsic biophysical mechanism. The effect of
afforestation on the surface temperature is 1.34 K, −0.48 K, 2.09 K and 0.22 K for the summer daytime,
the summer nighttime, the winter daytime and the winter nighttime, respectively, for the grid cells
that have experienced conversion from bare soil to shrub. The corresponding domain mean values
are 0.15 K, −0.2 K, 0.67 K, and 0.06 K. The seasonal variation of surface temperature change is mainly
caused by changes in roughness and Bowen ratio. In the daytime, the surface temperature changes
are dominated by the biophysical effect, with albedo change being the main biophysical factor. In the
nighttime, the biophysical effect (mainly associated with roughness change) and the atmospheric
feedback (mainly associated with change in the background air temperature) contribute similar
amounts to the surface temperature changes. We conclude that the atmospheric feedback can amplify
the influence of the surface biophysical effect, especially in the nighttime.

Keywords: surface temperature; biophysical effect; atmospheric feedback; WRF

1. Introduction

Afforestation in semi-arid areas is an important method to protect soil, combat densification and
improve the local environment. According to the Food and Agriculture Organization (FAO) of the
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United Nations, the area of planted forests was 264 Mha worldwide in 2010, and the rate of afforestation
was 4.3 Mha/year during the decade beginning in 1990 and 4.9 Mha/year during the decade starting in
2000 [1]. Of the global total afforested area, about 22% is in semi-arid climates [1]. Several countries in
arid regions reported a net afforestation between 1990 and 2010, including Egypt, Tunisia, Cyprus, Iraq,
Israel, Kuwait, Kyrgyzstan, Lebanon, Syria, Turkey, and the United Arab Emirates. The afforestation
activities in Turkey can be traced to 1870, and 2.06 Mha of afforestation was completed by 2015 [2]. In
the semiarid Mediterranean Basin, afforestation activities have covered more than 2.5 Mha during the
second part of the 20th century [3]. The area of afforestation in North Africa and West Asia is 4 Mha
from 1950 to 2000, representing 6% of the actual forest and woodland in these regions [4]. In China,
multiple afforestation programs have taken place since 1978, resulting in the largest afforested area in
the world (about 69 Mha in 2013, [5]).

The Kubuqi Desert is the seventh largest desert in China and is a major dust source that affects the
air quality in Inner Mongolia and the Beijing municipality. To reduce desertification and to control
dust storms, local governments and private sectors have been implementing large-scale environmental
improvement projects (including planting trees and shrubs). A total of 0.6 Mha of bare land was
replaced with vegetation by 2010 [6]. The environmental improvement in the Kubuqi Desert is
an example of successful ecological restoration in China and was featured by the United Nations
Convention to Combat Desertification and the United Nations Environment Programme during the
Fifth Kubuqi International Desert Forum [7].

The change of land-use changes the biophysical properties of the land surface (surface roughness,
evaporation, albedo). It has been long known that the regional climate is sensitive to even small
changes in land surface properties [8]. The biophysical effects of land-use change to climate constitute
their regulation of the exchanges of energy, water, and momentum between the earth’s surface and
the lower atmosphere [9–11]. The biogeochemical effects refer to greenhouse gas forcing due to the
changing CO2 flux to the atmosphere and the possible carbon storage in plants [10,12]. More recent
studies on forest management have shown that the biophysical changes can result in similar or stronger
local climate changes than the effects arising from biogeochemical processes [10,13–18].

How the large-scale afforestation influences the local and regional climate through biophysical
processes is a subject of several previous studies. Using a space-for-time approach that compares the
surface temperatures of forests with those of adjacent grasslands and croplands, Peng, et al. [19] found
that afforestation in China has a cooling effect in the daytime and a warming effect in the nighttime.
Cao, et al. [20] assessed the impacts of land-use change in the agro-pastoral transitional zone of North
China between 2001 and 2010 with the Weather Research and Forecasting (WRF, [21]) model. Their
results show that the conversion of cropland to grassland, a significant land-use change in this region,
resulted in local cooling in the summer and warming in the winter. In their study, the air temperature
change of the Kubuqi desert area between 2000 and 2010 is not significant, ranging from −0.2 to 0.2 K in
the summer and −0.4 to 0.4 K in the winter. Ge, et al. [22] investigated the effects of vegetation fraction
change from 1982 to 2000 on the temperature in Eastern China with the WRF model. They concluded
that climate warming was slowed in the regions with increased vegetation and was enhanced in the
regions with decreased vegetation. Using the National Center for Atmospheric Research (NCAR)
second generation regional climate model (RegCM2) [23,24], Liu, et al. [25] found that the afforestation
projects in northern China increase precipitation by 15% and reduce the air temperature by nearly
0.5 K. Some other studies also investigate the effects of afforestation on soil quality and precipitation
(e.g., Zhang, et al. [26] and Kuriqi [27]). In the present study, we focus on the surface temperature
change and the related energy flux changes.

The land surface temperature Ts is an important climatic variable for understanding the interactions
between land surface changes and atmospheric changes. This is because the Ts is a sensitive indicator
of perturbations brought by land-use changes to the surface energy balance. It is a quantity routinely
monitored by remote sensing and calculated by land surface models. To generate mechanistic insights
into the land-atmosphere interactions, the total Ts changes brought on by afforestation and other
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land-use activities are often partitioned into component contributions associated with individual
biophysical factors. One theory used for the partitioning calculation is the intrinsic biophysical
mechanism (IBPM) theory proposed by Lee, et al. [28]. According to the IBPM theory, changes in
the surface temperature are a consequence of a local longwave radiative feedback on perturbations
of the surface albedo and energy redistribution caused by changes to the aerodynamic resistance
(or surface roughness) and surface evaporation. This theory has been used in observational studies
involving pairs of sites [13,28] and in climate modeling studies comparing subgrid Ts variations [29–31].
An assumption underlying these applications is that the background atmosphere, as characterized
by atmospheric forcing variables at the blending height, mainly the incoming shortwave radiation,
the incoming longwave radiation and the air temperature, is unaffected by changes in the surface
biophysical properties (Figure 1a,b).

Forests 2019, 10, x FOR PEER REVIEW 3 of 22 

3 

a quantity routinely monitored by remote sensing and calculated by land surface models. To generate 95 
mechanistic insights into the land-atmosphere interactions, the total Ts changes brought on by 96 
afforestation and other land-use activities are often partitioned into component contributions 97 
associated with individual biophysical factors. One theory used for the partitioning calculation is the 98 
intrinsic biophysical mechanism (IBPM) theory proposed by Lee, et al. [28]. According to the IBPM 99 
theory, changes in the surface temperature are a consequence of a local longwave radiative feedback 100 
on perturbations of the surface albedo and energy redistribution caused by changes to the 101 
aerodynamic resistance (or surface roughness) and surface evaporation. This theory has been used in 102 
observational studies involving pairs of sites [13,28] and in climate modeling studies comparing 103 
subgrid Ts variations [29–31]. An assumption underlying these applications is that the background 104 
atmosphere, as characterized by atmospheric forcing variables at the blending height, mainly the 105 
incoming shortwave radiation, the incoming longwave radiation and the air temperature, is 106 
unaffected by changes in the surface biophysical properties (Figure 1 a & b).  107 

 108 

Figure 1. Conceptual diagram of biophysical effect and atmospheric feedback. Ta is air temperature, 109 
K↓ is incoming shortwave radiation, L↓ is incoming longwave radiation, and the change Δ denotes 110 
the difference between different land cover types. ΔTs indicates the surface temperature change. (a) 111 
represents the original status before the land-use change; (b) represents the status after the land-use 112 
change only considering the biophysical effect; (c) represents the status after the land-use change 113 
considering the biophysical effect and atmospheric feedback. 114 

In the real atmosphere however, feedback processes can amplify or diminish the biophysical 115 
effect. Possible atmosphere feedback mechanisms include changes of lapse rate, water vapor content, 116 
cloud amount and cloud altitude [32,33]. In the context of the surface energy balance, these 117 
mechanisms are manifested in changes in the incoming longwave radiation (ΔL↓) and shortwave 118 
radiation (ΔK ↓ ) and the background air temperature (ΔTa). Green, et al. [34] found that the 119 
atmospheric feedback explains 30% of surface radiation variations in the Mediterranean region, 120 
where the enhancement of latent and sensible heat transfers due to denser vegetation increases the 121 
boundary layer height and convection, affecting cloudiness, and consequently the incident surface 122 
radiation. He, et al. [35] found that the atmospheric feedback caused by shrub encroachment creates 123 
a warmer microclimate in the northern Chihuahuan desert, reducing juvenile shrubs’ vulnerability 124 
to freeze-induced mortality, which in turn favors shrub growth. The total Ts change should consist of 125 
a component arising from the intrinsic surface biophysical change and a component that accounts for 126 
the atmospheric feedback (Figure 1c). Splitting the forcing results into contributions of the intrinsic 127 
biophysical effect and the atmospheric feedback can determine the nature of the both terms. A deeper 128 
understanding of the relative importance of the two terms is required in the design of afforestation 129 
projects with limited resources. Explicit measures of each term can inform decisions for this 130 
afforestation and the associated land-use management. Policymakers can benefit from such studies 131 
to choose appropriate climate-effective mitigation actions. 132 

Figure 1. Conceptual diagram of biophysical effect and atmospheric feedback. Ta is air temperature,
K↓ is incoming shortwave radiation, L↓ is incoming longwave radiation, and the change ∆ denotes
the difference between different land cover types. ∆Ts indicates the surface temperature change.
(a) represents the original status before the land-use change; (b) represents the status after the land-use
change only considering the biophysical effect; (c) represents the status after the land-use change
considering the biophysical effect and atmospheric feedback.

In the real atmosphere however, feedback processes can amplify or diminish the biophysical effect.
Possible atmosphere feedback mechanisms include changes of lapse rate, water vapor content, cloud
amount and cloud altitude [32,33]. In the context of the surface energy balance, these mechanisms
are manifested in changes in the incoming longwave radiation (∆L↓) and shortwave radiation (∆K↓)
and the background air temperature (∆Ta). Green, et al. [34] found that the atmospheric feedback
explains 30% of surface radiation variations in the Mediterranean region, where the enhancement
of latent and sensible heat transfers due to denser vegetation increases the boundary layer height
and convection, affecting cloudiness, and consequently the incident surface radiation. He, et al. [35]
found that the atmospheric feedback caused by shrub encroachment creates a warmer microclimate in
the northern Chihuahuan desert, reducing juvenile shrubs’ vulnerability to freeze-induced mortality,
which in turn favors shrub growth. The total Ts change should consist of a component arising from
the intrinsic surface biophysical change and a component that accounts for the atmospheric feedback
(Figure 1c). Splitting the forcing results into contributions of the intrinsic biophysical effect and
the atmospheric feedback can determine the nature of the both terms. A deeper understanding
of the relative importance of the two terms is required in the design of afforestation projects with
limited resources. Explicit measures of each term can inform decisions for this afforestation and the
associated land-use management. Policymakers can benefit from such studies to choose appropriate
climate-effective mitigation actions.

The published studies cited above have given an overall conclusion about how land-use change
may affect the local temperature. To our best knowledge, no studies have isolated the roles of
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biophysical forcing and atmosphere feedback, nor have they quantified the dominant contributors
to the regional temperature change. In this study, the biophysical effect and atmospheric feedback
of afforestation in the Kubuqi Desert are evaluated with the WRF model and the IBPM theory. Here,
afforestation is defined as planting trees and shrubs in bare land. Our focus is on the surface temperature
response to afforestation in this region. Specifically, we aim: (1) to evaluate the seasonal and diurnal
surface temperature change caused by land-use and land-cover change in the Kubuqi Desert, and (2) to
compare the relative contributions of the intrinsic biophysical effect and the atmospheric feedback to
surface temperature changes.

This study extends the work we have recently published [36]. In that study, we deployed a
space-for-time strategy to investigate the Ts response to afforestation. Specifically, we used the IBPM
theory to decompose the Ts difference observed between an afforested site and a shrub site in the
Kubuqi Desert into component contributions. In the present study, we use the WRF model to quantify
the Ts change at the regional scale. The flux observations described in Wang, et al. [36] are used to
verify the WRF model performance. An advantage of the WRF modeling over the pair-sites analysis is
that we can quantify the effect of not only shrub-to-forest conversion but also other types of land-use
change in the Kubuqi Desert. By coupling the atmosphere dynamically with the land surface in the
model domain, the model allows us to investigate the role of atmospheric feedback via changes in the
incoming shortwave radiation, the incoming longwave radiation and the background air temperature.
In the space-for-time analysis, these quantities are assumed the same between the paired sites, but
the assumption does not necessarily hold when the background atmosphere is allowed to respond to
land-use changes. In the present study, we attempted to address whether the atmospheric feedback
processes can amplify (or diminish) the biophysical effect using WRF simulation.

2. Methods

2.1. WRF Modeling

The WRF model is a mesoscale atmospheric model widely used in applications ranging from
regional climate prediction to the investigation of land-atmosphere interactions (https://www.mmm.
ucar.edu/weather-research-and-forecasting-model). In this study, we used the WRF dynamics solver
described by Skamarock, et al. [21]. The NOAH land surface model [37,38] was used to simulate the
surface fluxes to the atmosphere. The other main physical parameterizations used for the simulations
are presented in Table 1.

Table 1. Model configuration and main physical parameterizations used for the two simulations.

Items Description

Model version WRF 3.7.1
Dynamics solver Advanced Research WRF

Time step 30 s
Output interval 1 h

Vertical level 27
Radiation scheme CAM3 a

Surface model Noah land surface model [37,38]
Cumulus scheme Grell-Freitas ensemble scheme [39]

Microphysic scheme WSM3 b

PBL scheme YSU c

Surface layer Monin-Obukhov [40,41]
a CAM3, the Community Atmosphere Model Version 3 for longwave and shortwave radiation [42,43]; b WSM3,
the WRF Single-Moment 3 class microphysics scheme [44]; c YSU, the Yonsei University planetary boundary layer
scheme [45,46].

The WRF model is configured with two nested domains (Figure 2). The coarse outer domain
(D01) covers a total area of 1106 km × 966 km with a 14-km grid spacing in both horizontal directions.

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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The inner domain (D02) is centered at 40.38◦ N and 108.25◦ E and covers the entire Kubuqi Desert
(238 km × 196 km), using a 2 km grid spacing. Considering the computing time consuming and to
keep the model away from collapse due to high resolution of the outer domain, a parent grid ratio of 7
was used to achieve a fine resolution of the inner domain. This ratio is higher than the recommended
ratios of 3 and 5 [21]. It may cause the nonequilibrium of weather and turbulence with grid spacing
in the border grid cells [47]. To avoid bias, seven layer grid cells on the boundaries were excluded
in the statistical analysis. The projection is Lambert with two standard parallels of 30◦N and 60◦N
and the central meridian of 109◦E. Two one-year continuous simulations, labeled as EXP_2000 and
EXP_2008, were performed using identical settings except for the underlying land-use and land-cover
data. Years 2000 and 2008 were chosen because the data from meteorological stations and eddy flux
tower were available during these periods. In EXP_2000 the land-cover is that in the year 2000 and
EXP_2008 is in the year 2008. Both EXP_2000 and EXP_2008 use the same initial and lateral boundary
conditions in 2008. The experimental design of the two simulations is shown in Figure S1 as a flow
chart. The integration time spans 0000 UTC on 1 January 2008 to 1800 UTC on 31 December 2008 for
both EXP_2000 and EXP_2008, and the output time interval is 1 h.
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Figure 2. Illustration of the two nested model domains used in the WRF simulations.

The major land-use changes in the Kubuqi Desert during 2000–2008 were conversions from bare
land to shrubland (Figure 3c, Table 2). The area of bare land decreased from 15,711 km2 in 2000 to
6176 km2 in 2008, or about 20% of the study region. The reduction in the bare land area was mainly
caused by conversion to shrubland. The spatial distribution of the transition zone matches the aerial
seeding operations prior to 2008 [6]. The dominant original shrub in Kubuqi desert is Artemisia Ordosica
Krasch., which is also chosen to plant through aerial seeding. The grasses in this area mainly include
licorice (Glycyrrhiza uralensis Fisch.) and alfalfa (Medicago Sativa L.). The principal crops are maize and
sunflower (Helianthus annuus L.).
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Table 2. Comparison of biophysical effect and dynamic feedback for different land-use/land-cover transition and the contributions to changes in surface temperature
from individual factors (Terms 1–7 in K). K↓ is incoming shortwave radiation (W m−2), L↓ is incoming longwave radiation (W m−2), Ta is air temperature (K) and the
change ∆ denotes the difference between EXP_2008 and EXP_2000. ∆T1 denotes the surface temperature change caused by intrinsic biophysical effect and ∆T2 denotes
the surface temperature change caused by atmospheric feedback.

Land
Change

Type

Area
(km2) Time ∆K↓ ∆L↓ ∆Ta ∆T1 ∆T2

Albedo
Term1

Roughness
Term2

Bowen
Ratio
Term3

Soil Heat
Flux Term4

K↓
Term5

L↓
Term6

Ta
Term7

Sum
(Terms 1

through 7)

No
change 30,552

winter daytime −0.11 0.34 0.17 0.02 0.18 0.02 0.02 −0.02 0.00 0.00 0.01 0.17 0.20
winter nighttime 0.00 0.11 0.00 −0.01 0 0.00 −0.02 0 0.01 0.00 0.00 0.00 −0.01
summer daytime −0.84 0.50 0.07 −0.03 0.07 0.01 0.04 −0.05 −0.03 −0.01 0.01 0.07 0.04

summer nighttime 0.00 −0.28 −0.13 −0.06 −0.06 0.00 −0.06 −0.02 0.02 0.00 0.00 −0.06 −0.12

Bare
land to
shrub

10,268

winter daytime −3.49 2.56 0.63 1.51 0.58 1.11 −0.05 0.37 0.08 −0.05 0.06 0.57 2.09
winter nighttime 0.00 0.92 0.04 0.12 0.1 0.00 0.07 0.01 0.04 0.00 0.01 0.09 0.22
summer daytime −9.31 6.83 0.33 0.97 0.37 1.74 −0.44 −0.16 −0.17 −0.14 0.18 0.33 1.34

summer nighttime 0.00 2.02 −0.39 −0.26 −0.22 0.00 −0.37 0.01 0.10 0.00 0.02 −0.24 −0.48

Shrub
to grass 2332

winter daytime −1.97 1.62 0.35 0.68 0.31 0.77 −0.28 0.19 0.00 −0.04 0.05 0.30 0.99
winter nighttime 0.00 0.86 0.05 −0.02 −0.01 0.00 −0.06 0.01 0.03 0.00 0.04 −0.05 −0.03
summer daytime −4.69 1.95 0.00 −0.44 0 0.87 −0.13 −0.97 −0.21 −0.09 0.05 0.04 −0.44

summer nighttime 0.00 1.34 −0.48 −0.16 −0.19 0.00 −0.25 −0.14 0.23 0.00 0.04 −0.23 −0.35

Cropland
to grass 992

winter daytime 0.29 −0.58 0.13 0.03 0.12 −0.14 0.20 −0.02 −0.01 0.01 −0.02 0.13 0.15
winter nighttime 0.00 −0.64 −0.01 −0.13 −0.07 0.00 −0.17 0.01 0.03 0.00 −0.03 −0.04 −0.20
summer daytime 0.33 −2.67 0.01 0.13 −0.02 −0.24 0.24 0.11 0.02 0.01 −0.06 0.03 0.11

summer nighttime 0.00 −2.81 −0.16 −0.06 −0.19 0.00 −0.06 −0.01 0.01 0.00 −0.09 −0.10 −0.25

Shrub
to

cropland
644

winter daytime −2.53 1.78 0.32 0.59 0.27 0.88 −0.58 0.23 0.06 −0.04 0.05 0.26 0.86
winter nighttime 0.00 1.39 0.24 0.22 0.25 0.00 0.25 0.01 −0.04 0.00 0.04 0.21 0.47
summer daytime −5.83 4.34 −0.01 −0.69 −0.01 0.95 −0.52 −1.02 −0.10 −0.09 0.09 −0.01 −0.7

summer nighttime 0.00 4.39 −0.36 −0.24 −0.10 0.00 −0.39 −0.06 0.21 0.00 0.09 −0.19 −0.34

Whole
domain

46,648

winter daytime −0.95 0.86 0.29 0.38 0.29 0.30 −0.02 0.08 0.02 −0.01 0.02 0.28 0.67
winter nighttime 0.00 0.30 0.03 0.03 0.03 0.00 0.01 0.00 0.02 0.00 0.01 0.02 0.06
summer daytime −2.88 1.91 0.12 0.01 0.14 0.28 −0.08 −0.12 −0.07 −0.04 0.05 0.13 0.15

summer nighttime 0.00 0.28 −0.11 −0.1 −0.1 0.00 −0.12 −0.02 0.04 0.00 0.00 −0.10 −0.2
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The land-use and land-cover data are primarily based on the Landsat Thematic Mapper
digital images acquired in 2000 and 2008. Random Forest algorithm is used in the supervised
classification [48,49]. We upscale the classification results from the 30-m satellite pixel resolution to the
2-km resolution by assigning the land-use to the dominant type in each WRF grid cell.

The initial and lateral boundary conditions for both simulations were provided by the weather
forecast model Global Forecast System (ftp://nomads.ncdc.noaa.gov/GFS/analysis_only) product for
2008 with a 0.5◦ by 0.5◦ spatial resolution at 6-hourly intervals. The observation data used for evaluating
the model performance were obtained from the National Meteorological Information Center, Chinese
Meteorological Administration (CMA [50], http://data.cma.gov.cn/). These datasets contain the daily
climatological variables (the pressure, the temperature at 1.5 m, the wind at 10 m and the precipitation)
for 2008 for nine meteorological stations across the Kubuqi Desert (Figure 3c, black dots). In addition,
the surface flux variables (sensible heat, latent heat, ground heat) were evaluated against the data
obtained in 2008 at an eddy-covariance site located in a shrubland ecosystem in the center of the
Kubuqi Desert (40◦32′N, 108◦41′E, Figure 3c, red dot; [36]).

2.2. Offline Calculations

According to the IBPM theory [28], the surface temperature is expressed as:

Ts = Ta +
λ0

1 + f
(R∗n −G) (1)

where Ts is surface temperature (K), Ta is air temperature (K) at the blending height, G is ground heat
flux (W m−2), λ0 (K W−1 m−2) is given by:

λ0 =
1

4σT3
s

(2)

where σ is the Stephan-Boltzmann constant, f is an energy redistribution factor (dimensionless), and
R∗n is apparent net radiation:

R∗n = K↓(1− α) + L↓ − σT4
a (3)

where K↓ is incoming shortwave radiation (W m−2), α is surface albedo, and L↓ is incoming longwave
radiation (W m−2), the proof of Equation (1) is given in the supporting information.

The energy redistribution factor f is given by:

f =
ρCp

4rtσT3
s

(
1 +

1
β

)
(4)

where ρ is air density, Cp is specific heat of air at constant pressure, β is Bowen ratio, and rt is total heat
transfer resistance.

In a site pair analysis, the surface temperature perturbation ∆Ts is found by differentiating
Equation (1) by holding K↓, L↓ and Ta constant between the paired sites. If we allow K↓, L↓ and Ta to
change in response to land-use changes, we obtain a more general expression for ∆Ts, as

∆Ts ≈
λ0

1+ f

(
−K↓∆α

)
+ −λ0

(1+ f )2 (R∗n −G)∆ f1+
−λ0

(1+ f )2 (R∗n −G)∆ f2+

Term 1 Term 2 Term 3
−λ0
1+ f ∆G + λ0

1+ f (1− α)∆K↓ + λ0
1+ f ∆L↓ +

(
∆Ta −

λ0
1+ f σ∆T4

a

)
Term 4 Term 5 Term 6 Term 7

(5)

where ∆ denotes the difference in a variable between EXP_2008 and EXP_2000 (value in EXP_2008
minus value in EXP_2000). For example, ∆α is the difference in albedo between EXP_2008 and

ftp://nomads.ncdc.noaa.gov/GFS/analysis_only
http://data.cma.gov.cn/


Forests 2019, 10, 368 9 of 21

EXP_2000 (albedo in 2008 minus albedo in 2000). The change in the energy redistribution factor consists
of changes in surface roughness (∆f 1) and Bowen ratio (∆f 2):

∆ f1 =
−ρCp

4rtσT3
s

(
1 +

1
β

)
∆rt

rt
(6)

∆ f2 =
−ρCp

4rtσT3
s

(
∆β
β2

)
(7)

In Equation (5), Term 1 on the right-hand side of the equation represents the effect of albedo
change, Terms 2 and 3 represents the role of energy redistribution associated with roughness change
and with Bowen ratio change, respectively, Term 4 represents ground heat flux change, Term 5 is the
effect of incoming shortwave radiation change, Term 6 is the effect of incoming longwave radiation
change and Term 7 is related to air temperature change.

In this study, the first four terms represent the intrinsic biophysical effect, and the last three terms
represent the dynamic feedback. One specific objective of this study is to compare the total biophysical
effect (sum of Terms 1 to 4) and the total effect arising from the dynamic feedback (sum of Terms 5 to 7).

Each term in Equation (5) is calculated offline using the variables saved from the online WRF
model calculation. The term “offline” means that we calculated each term in Equation (5) after the
WRF simulation using the model outputs. The “offline” ∆Ts represents the summation of all terms
in Equation (5) and the “online” ∆Ts represents the change of surface temperature simulated in the
WRF model. Two intermediate variables, the Bowen ratio and the total resistance to heat diffusion are
computed as

β =
H
LE

(8)

rt = ρCp
Ts − Ta

H
(9)

where H and LE are sensible and latent heat flux, respectively.
The IBPM calculation is applied to hourly data in each grid. The hourly results are averaged

according to daytime and nighttime periods. When the incoming shortwave radiation is larger than
0 W/m2, the results are considered as daytime; otherwise, they are considered as nighttime. The
analysis is done separately for daytime and nighttime periods to account for the diurnal asymmetry of
the biophysical effect [51].

3. Results

3.1. Model Evaluation

Model evaluation was carried out as shown in Figure 4 (monthly mean) and Figure 5 (hourly scale).
A general agreement is found between the monthly mean air temperatures (2 m level result) in the
EXP_2008 simulation and the observations at the nine meteorological stations within the model domain
(Figure 4), with the R2 value of around 0.99 and a mean bias of −0.74 ◦C. This result is consistent with
the WRF simulation by Zhang, et al. [52] which showed a cold bias between 1.0 ◦C and 1.5 ◦C for the
whole of China. The root mean square error (RMSE) is 1.76 ◦C, slightly better than the result (1.92 ◦C)
obtained by Cao, et al. [20]. In the summer, the RMSEs, ranging from 0.94 (June) to 1.33 ◦C (July),
are smaller than the results of Zhang, et al. [52] (ranging from 1 to 2.5 ◦C). In the winter, the RMSEs
range from 1.64 (January) to 2.39 ◦C (November). According to Zhang, et al. [52], the RMSEs range
from 2–3 ◦C in the winter. The simulated results from 14 February to 24 February and 4 August to 14
August 2008 were extracted from the nearest grid to the eddy covariance tower and compared with
the observations. The results show that the simulated radiation and energy components (incoming
shortwave radiation, incoming longwave radiation, sensible heat flux, latent heat flux and soil heat
flux) are in agreement with those from observations (Figure 5). In the summer, the mean bias is
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2.4 W m−2, −12.8 W m−2, 2.5 W m−2, 63.9 W m−2 and −14.5 W m−2 for sensible heat flux, latent heat
flux, ground heat flux, incoming short wave radiation and incoming longwave radiation, respectively.
The simulated sensible heat flux is close to the observation in the clear sky condition, but it is higher
than the observation on 8 and 14 August. These two days are cloudy days. This overestimation
may result from a random time lag in the radiation and sensible heat flux. However, this time lag is
not systematic but highly depends on atmosphere condition. For example, the model successfully
simulates the radiation and energy fluxes on another cloudy day (9 August).
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Figure 5. Comparisons between simulated air temperature, radiation and energy components with
observations of eddy covariance tower in a shrub ecosystem from 14 February to 24 February (a) and
4 August to 14 August (b). Ta represents air temperature, H represents sensible heat, LE represents
latent heat, G represents ground heat flux.

3.2. Online versus Offline Surface Temperature Change

The spatial distributions of ∆Ts calculated online and offline for the summer daytime (Figure 6a,b)
and nighttime (Figure 6e,f) were compared. The results for the winter season are given in Figure 7.
The online results express ∆Ts as the difference in the surface temperatures calculated by the EXP_2008
and the EXP_2000 model simulations. The offline ∆Ts is the sum of the seven individual terms in
Equation (5) calculated with the offline diagnostic variables. The spatial distributions of the online
∆Ts and the offline ∆Ts match each other, for both the daytime and the nighttime period and in both
seasons. In the daytime, for the summer and the winter, both the online result and offline result show
a warming effect, especially for the afforested area along the Yellow River and in the southwestern
portion of the domain (Figures 6a,b and 7a,b). The surface temperature does not change in the core
area of the desert (in the middle of the domain). North of the Yellow River, both online and offline
results show a fragmented pattern of warming and cooling effects. For the summer nighttime period,
most of the southwestern area exhibiting land-cover change shows a cooling trend (Figure 6e), while in
the winter night, the cooling trend is not clearly (Figure 7e). The differences between online and offline



Forests 2019, 10, 368 12 of 21

∆Ts can be found in Figure S2. The RMSE is 0.35 K, 0.07 K, 0.17 K and 0.07 K for the summer daytime,
the summer nighttime, the winter daytime, and the winter nighttime, respectively.Forests 2019, 10, x FOR PEER REVIEW 13 of 22 
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Figure 7. Partition of the daytime (a–d) and nighttime (e–h) ∆Ts in the winter. (a) daytime ∆Ts

calculated online by WRF, (b) daytime ∆Ts calculated offline with the IBPM theory, (c) biophysical effect
(∆T1), (d) atmospheric feedback (∆T2). (e–h) represent the nighttime results corresponding to (a–d).

Figures 8 and 9 present the comparison between online and offline results as scatter plots (Figure 8a
for the summer daytime, Figure 8d for the summer nighttime, Figure 9a for the winter daytime and
Figure 9d for the winter nighttime), with each data point denoting one grid point. The results follow
the 1:1 line with high determination coefficients (R2 > 0.9) except for the summer daytime (R2 = 0.78).



Forests 2019, 10, 368 13 of 21
Forests 2019, 10, x FOR PEER REVIEW 14 of 22 

14 

 339 

Figure 8. (a) Relationship between daytime ΔTs in the summer calculated offline with the IBPM theory 340 
and the ΔTs calculated online by WRF; (b) the biophysical effect (ΔT1) versus the online ΔTs; (c) the 341 
atmospheric feedback (ΔT2) versus the online ΔTs. (d)-(f) represent the nighttime results 342 
corresponding to (a)-(c). The red dash lines represent the 1:1 line and the solid red lines represent the 343 
regression results. 344 

 345 

Figure 9. (a) Relationship between daytime ΔTs in the winter calculated offline with the IBPM theory 346 
and the ΔTs calculated online by WRF; (b) the biophysical effect (ΔT1) versus the online ΔTs; (c) the 347 
atmospheric feedback (ΔT2) versus the online ΔTs. (d)-(f) represent the nighttime results 348 
corresponding to (a)-(c). The red dash lines represent the 1:1 line and the solid red lines represent the 349 
regression results. 350 

Figure 8. (a) Relationship between daytime ∆Ts in the summer calculated offline with the IBPM theory
and the ∆Ts calculated online by WRF; (b) the biophysical effect (∆T1) versus the online ∆Ts; (c) the
atmospheric feedback (∆T2) versus the online ∆Ts. (d–f) represent the nighttime results corresponding
to (a–c). The red dash lines represent the 1:1 line and the solid red lines represent the regression results.

Forests 2019, 10, x FOR PEER REVIEW 14 of 22 

14 

 339 

Figure 8. (a) Relationship between daytime ΔTs in the summer calculated offline with the IBPM theory 340 
and the ΔTs calculated online by WRF; (b) the biophysical effect (ΔT1) versus the online ΔTs; (c) the 341 
atmospheric feedback (ΔT2) versus the online ΔTs. (d)-(f) represent the nighttime results 342 
corresponding to (a)-(c). The red dash lines represent the 1:1 line and the solid red lines represent the 343 
regression results. 344 

 345 

Figure 9. (a) Relationship between daytime ΔTs in the winter calculated offline with the IBPM theory 346 
and the ΔTs calculated online by WRF; (b) the biophysical effect (ΔT1) versus the online ΔTs; (c) the 347 
atmospheric feedback (ΔT2) versus the online ΔTs. (d)-(f) represent the nighttime results 348 
corresponding to (a)-(c). The red dash lines represent the 1:1 line and the solid red lines represent the 349 
regression results. 350 

Figure 9. (a) Relationship between daytime ∆Ts in the winter calculated offline with the IBPM theory
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3.3. Seasonal Differences

Generally, the replacement of bare land with shrubland increases the temperature in the daytime
both in the winter and in the summer. In the summer, the land-use change from 2000 to 2008 has a
slight warming effect of about 0.06 K for the whole domain. If we focus on the afforestation grids
where the replacement of bare land with shrubland had occurred, the warming effect is 0.43 K. In the
winter, the average warming effect is 0.24 K for the whole domain and 1.12 K for the afforestation area.
The calculated results in this part are mean values of the daytime results and the nighttime results, so
they are not the same as those in Table 2.

The attribution analysis reveals that the seasonal variation is mainly caused by roughness change
(Term 2) and Bowen ratio change (Term 3, Table 1, Figures S3–S6, partition results for the summer
daytime, summer nighttime, winter daytime and winter nighttime, respectively). Take the afforestation
area as an example: In the summer, Term 2 is negative (about −0.40 K), and the effect is negligible in
the winter. As for Term 3, the effect is negative (about −0.08 K) in the summer, which offsets part of
the total warming effect. In the winter, Term 3 is positive (about 0.20 K), which enhances the overall
warming effect. The seasonal difference caused by these two terms is 0.68 K, which is almost the same
as the total difference (0.75 K) for the afforestation grid cells. Besides, the soil heat flux changes (Term 4)
have an effect about —0.02 K in the summer an 0.02 K in the winter across the model domain. The
absolute values of Term 4 are higher in the summer (both daytime and nighttime) than those in the
winter, mainly due to the seasonal variations of soil moisture.

3.4. Daytime versus Nighttime

When evaluating the influence of land-use change, it is necessary to consider daytime and
nighttime periods separately because diurnal asymmetry exists in both the magnitude and the sign
of ∆Ts [28,51]. In the summer daytime, the surface temperature of the whole domain increases by
an average of 0.15 K from 2000 to 2008 (Figure 6a, Table 2). Conversion of bare land to shrubland
causes a summer daytime warming effect of 1.34 K, with the main contributor of albedo change (1.74 K,
Table 2, Figure S3). In the winter daytime, the surface temperature of the whole domain increases by
0.67 K, and the grid cells of bare land to shrubland conversion (the afforestation area) warms by an
average of 2.09 K. Both the albedo change (1.11 K, Term 1), the Bowen ratio change (0.37 K, Term 3) and
the air temperature change (0.57K, Term 7) contribute to the winter daytime warming effect (Table 2,
Figure S5).

In the summer night, the whole domain cools by an average of 0.20 K (average ∆Ts = −0.20 K).
The afforestation grid cells have a substantial nighttime cooling effect (average ∆Ts = −0.48 K), with
the main contributor of roughness change in these grid cells (−0.37 K, Table 2, Figure S4). In these grid
cells, the background air temperature change also makes a significant contribution (−0.24 K) to the
nighttime surface cooling.

In the winter nighttime, the surface temperature of the whole domain shows a negligible change
(∆Ts = 0.06 K). The grid cells of bare land to shrubland conversion experience a slight warming effect
(∆Ts = 0.22 K) mainly due to roughness change (0.07 K, Figure S6) and air temperature change (0.09 K).
We found that the diurnal asymmetry, the phenomenon in which the daytime ∆Ts has the opposite
sign with the nighttime ∆Ts, is evident in the summer (Figure 6a,e), but not in the winter (Figure 7a,e).

For those grid cells where the land-use did not change between 2000 to 2008, the surface
temperature change is minimal (Table 2), ranging from −0.12 K in the summer night to 0.2 K in
the winter daytime. As the licorice planting is promoted in local plantation, three other kinds of
land-use change, shrubland (Artemisia Ordosica) to grassland (licorice and alfalfa), cropland (maize
and sunflower) to grassland and shrubland to cropland, account for 5%, 2% and 1% of the total area.
The surface temperature change is minor for grid cells that experienced conversion of cropland to
grassland, with the absolute values of ∆Ts less than 0.25 K. As for those cells experienced conversion
of shrubland to grassland and shrubland to cropland, the daytime ∆Ts ranges from 0.86 K to 0.99 K
in the winter, and −0.44 K to −0.7 K in the summer, and the nighttime ∆Ts are smaller, ranging from
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−0.35 K to 0.47 K. A detailed information about these partitioning results and whole domain averaged
results can be found in Table 2.

4. Discussion

4.1. Warming Effect in the Daytime

As shown in Figures 6 and 7, we found the replacement of bare land with shrubland increases
the temperature in the daytime, and the warming effect is stronger in the winter than in the summer.
Peng, et al. [19] used the MODIS satellite product to compare the surface temperature of forests with
those of adjacent croplands and grasslands. He found that afforestation in China has a cooling
effect (−1.1 ± 0.6 K) in the daytime for those areas with mean annual precipitation between 400 and
600 mm y−1. Although the forest absorbs more incoming radiation because of lower albedo, it dissipates
even more energy through evaporative cooling. The results in Peng, et al. [19] are consistent with our
previous study [36], which also shows that the planted forest is cooler than the adjacent shrubland
(−0.5 ± 0.2 K) in the daytime. However, in the present study, the major land-use change on the regional
scale is the replacement of bare land with shrubland. Thus, the warming signal reflects the difference
between shrubland and bare land instead of the difference between forest and other vegetation types
(cropland, grassland or shrubland). In Peng, et al. [19], the albedo of the forest is 2.8% lower than that
of cropland and 1.7% lower than that of grassland. Forest has deeper root and it can easily acquire
the groundwater, resulting to higher evapotranspiration. The energy loss through evapotranspiration
cools the surface because it easily exceeds the extra absorbed solar radiation. Besides, the forest can
increase the soil moisture and then increases the soil heat capacity, which can also cool the surface [19].
While in this study, the albedo of shrubland is 12% lower than that of bare land, and the contribution
of extra absorbed energy obviously exceeds the contribution of other terms which can cause a cooling
effect (Figure 6a, Figure 7a). The sign and magnitude of the temperature change here are different
with those in Wang, et al. [36] mainly due to the different albedo changes in the two processes. In the
present study, the albedo of shrubland is lower than that of bare land (12%). While in Wang, et al. [36],
the albedo of the planted forest is 30% higher than that of shrubland. The difference in albedo change,
which can explain the contradiction of similar studies, is sensitive to the type of land-use change.

The Kubuqi Desert is a typical Northern desert belonging to the temperate continental climate.
But in the tropical climate, the warming effect is often reported in the deforestation processes. For
example, Abera, et al. [53] found the net warming effect is 1.3 K when the land cover converted from
forest to cropland. Although the albedo change decrease the land surface temperature by 0.12 K, the
dominant influence of non-radiative mechanisms (roughness change and evapotranspiration change)
is about 10 times higher than that of radiative forcing. The study site of Abera, et al. [53] is the Horn of
Africa, which is close to the Indian Ocean. The precipitation in the forest area can reach 1500 mm, about
five times higher than that in the Kubuqi Desert. The higher soil moisture and evapotranspiration
keep the forest cooler than the cropland, while in our study, the contribution of evapotranspiration is
small due to the water deficit and the dominant influence is radiative forcing.

4.2. Intrinsic Biophysical Effect versus Atmospheric Feedback

In this section, we focus on the grid cells of bare land to shrubland conversion as these cells
have experienced the largest changes in surface temperature in comparison to other grid cells. In the
daytime, the contribution of the surface biophysical changes is larger than that of the atmospheric
feedback, accounting for nearly 86% and 98% of the total ∆Ts in the summer (Figure 8b) and in the
winter, respectively (Figure 9b).

Specifically, the biophysical effect is dominated by the albedo change (Term 1, Equation (5)), which
contributes 1.74 K to the summer daytime temperature increase and 1.11 K to the winter daytime
temperature increase. The afforested area has a lower albedo (0.22) than bare land (0.25) in the model
(default values in WRF version 3.7.1), and therefore absorbs more solar energy and warms up the



Forests 2019, 10, 368 16 of 21

surface in the daytime. The contribution of roughness change (Term 2) is −0.44 K in the summer, which
offsets part of the albedo warming effect. The mechanism underlying this cooling is well documented:
trees and shrubs enhance the convection between the land surface and the atmosphere, allowing more
efficient heat dissipation via turbulent diffusion than bare land [54]. In the winter, the influence of
Term 2 is relatively small (−0.05 K), because the shrub is dormant and the structure above ground is
less than that in the summer. The shrubland has high canopy conductance and transpiration rate,
which result in increased partitioning of net radiation into the latent heat flux. Thus, the Bowen ratio
change (Term 3) has a cooling effect (−0.16 K) in the summer.

The conversion of bare land to shrubs and forests causes changes in the background atmosphere.
The enhanced evapotranspiration changed the composition and properties of the clouds, and the
result is that the incoming shortwave radiation (K↓) decreases by −9.31 W m−2 (daytime mean) in the
summer and −3.49 W m−2 in the winter. Resulting from the cloud changes, the incoming longwave
radiation (L↓) increases by 6.83 W m−2 (daytime mean) in the summer and 2.56 W m−2 in the winter.
But the changes in K↓ and L↓ do not contribute much to the surface temperature change since they
counteract each other. Afforestation causes the domain-averaged surface incoming shortwave radiation
to decrease by 1.9 W m−2 (daytime mean of summer and winter seasons). The land conversion causes
the air temperature at the blending height to increase in both summer (0.33 K) and winter (0.63 K).
The signs of background air temperature changes are consistent with the signs of surface temperature
changes and it is the dominant atmospheric feedback process (Term 7; Table 2, Figures S3 and S5).
We infer that the perturbation of boundary layer property which can cause air temperature change is
sensitive to the land use types.

In the nighttime, the influence of atmospheric feedback is comparable with that of the biophysical
effect (Figures 6e–h and 7e–h). In the summer, the total contribution of atmospheric feedback is −0.22 K,
whereas the total biophysical effect is −0.26 K. The corresponding values for the winter nighttime are
0.1 K and 0.12 K. Specifically, the atmospheric feedback is manifested mainly in the background air
temperature change (Term 7), contributing −0.24 K and 0.09 K to the summer and winter nighttime
surface temperature change, respectively. The main biophysical effect is roughness change (Term 2),
contributing −0.37 K and 0.07 K to the summer and winter nighttime surface temperature changes,
respectively. Afforestation causes the incoming longwave radiation (L↓) to increase by 2.02 W m−2

(nighttime mean value) in the summer and 0.92 W m−2 in the winter, which causes a slight warming
effect (0.02 K in the summer and 0.01 in the winter). As for the whole domain, the incoming longwave
radiation increases by 0.3 W m−2 (nighttime mean of summer and winter seasons).

Figures 8a–c and 9a–c also show that the offline ∆Ts in the daytime is dominant by biophysical
effect (∆T1). Most of the feedback effect (∆T2) scatters in the range from −0.5 K to 0.5 K, or about
1/4 of the range of ∆T1. When the regression slope is closer to 1 (Figures 8b,c,e,f and 9b,c,e,f), the
corresponding factor contributes more to the ∆Ts. In the summer, the regression slope between ∆T1

and online daytime ∆Ts is 0.86 (R2 = 0.70), but the slope value between ∆T2 and online daytime ∆Ts

is 0.24 (R2 = 0.58). The slope can be considered as an estimated fraction of the ∆Ts caused by the
biophysical effect/atmospheric feedback. It means the biophysical effect contribute much more to the
∆Ts. In the winter, most of the variation in online daytime ∆Ts can be explained by ∆T1; the regression
slope is 0.98, which is very close to 1, with a higher R2 (0.90), indicating the biophysical effect is still
the dominant factor. However, the regression slope between ∆T2 and ∆Ts is 0.28 (R2 = 0.65) in the
winter daytime.

In the nighttime, both ∆T1 and ∆T2 show a significant linear relationship with online ∆Ts. The
regression slopes in the summer are 0.57 (∆T1) and 0.51 (∆T2) with high R2 values (0.95–0.98). The
values in the winter are 0.54 (∆T1, R2 = 0.99) and 0.47 (∆T2, R2 = 0.97). All the slope values are close to 0.5,
which means that the contribution of biophysical effect is about equal to that of atmospheric feedback.

We found the atmosphere feedback effects within the grid cells of afforestation are also not the
same. The frequency histograms of atmosphere feedback effects were shown in Figure 10, and the
frequency represents the number of grid cells. For example, the effects of atmosphere feedback range
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from 0 to 0.7 K with an average value of 0.37 K (∆T2, Table 2) in the summer daytime. The difference
within the same land-use change type is related to the upwind land cover changed and the scale
of afforestation. The prevailing wind in the Kubuqi Desert is from the northwest. The large scale
afforestation along the yellow river and afforestation in the southwestern part of the domain might
have an impact on the downwind region. The atmosphere feedback effect in the core desert area is
about 0.2 K higher than the result in the unchanged desert area in the eastern part of the domain
(Figure 6d) caused by the impact of afforestation along the yellow river in the upwind region. Moreover,
the atmosphere feedback effect of the multiple adjacent conversion grid cells is higher than that of the
isolated conversion grid cells. For example, the atmosphere feedback effect in the major afforestation
area (southwestern part of the domain) is 0.6 K, while the result in the sparse afforestation area (40.13N,
109.17E, Figure 3c) is 0.3 K in the summer daytime. In the summer nighttime, the atmosphere feedback
in the southwestern part of the domain contributes a cooling signal of −0.5 K, while the result in the
sparse afforestation area is −0.1 K (Figure 6h). These results indicate that the atmospheric feedback in
the downwind region can be influenced by the upwind area through horizontal transmission, and large
scale conversion area has greater potential to change the atmosphere than isolated conversion area.
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4.3. Limitations and Future Work

We found that for the 1:1 comparison of the online and offline ∆Ts, the daytime results (Figures 8a
and 9a) are more scattered than the nighttime results (Figures 8d and 9d) for both seasons. The
derivation of Equation (1) assumes that nonlinear interactions in the change terms can be ignored. For
example, concerning the changes in the net shortwave radiation, we assumed:

K↓1(1− α1) −K↓2(1− α2) ≈ −K↓∆α+ (1− α)∆K↓ (10)

where subscripts 1 and 2 represent EXP_2008 and EXP_2000, respectively, K↓ is the mean value of K↓1

and K↓2, and α is the mean value of α1 and α2. When the difference between K↓1 and K↓2 or between
α1 and α2 is large, as is the case in the summer daytime, this approximation may cause biases. In the
winter daytime, the scatter is much reduced (R2 = 0.96, Figure 9a, RMSE = 0.17 K) than in the summer
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daytime (R2 = 0.78, Figure 8a, RMSE = 0.35 K). In the future study, a more ingenious method should be
proposed to furtherly improve the accuracy and reduce the RMSE. Another limitation of this study is
that we only consider the real land-use change situation within two separate years (2000 and 2008). In
future research, longer time horizon study or virtual afforestation scenarios should be investigated to
achieve a deeper comprehension of the surface temperature change mechanism.

5. Conclusions

In this study, we evaluated the regional impact of afforestation on surface temperature in the
Kubuqi desert. We found the effect of afforestation on the surface temperature is 1.34 K, −0.48 K,
2.09 K and 0.22 K for the summer daytime, the summer nighttime, the winter daytime, and the winter
nighttime, respectively, for the grid cells that have experienced conversion from bare soil to shrubland
(the major land use change in this region). Although the afforestation provides effective dust control
and health benefits, the potential warming effect in the daytime should be considered.

The good agreement between the online and the offline calculations of ∆Ts found in this study is
good evidence that IBPM method performs well when it is connected with the WRF model. According
to partitioning results of the IBPM theory, the seasonal variation of surface temperature change is mainly
caused by the changes in roughness and Bowen ratio. Also, the daytime surface temperature change is
dominated by the surface biophysical effect, in particular, the effect of albedo change. The nighttime
temperature change can be attributed equally to surface biophysical effect and atmospheric feedback.

We conclude the atmospheric feedback can amplify the influence of the surface biophysical effect
in the afforestation area. Our results showed that ∆T1 (biophysical effect) and ∆T2 (atmospheric
feedback) have the same sign in the area of bare land to shrubland conversion in all situation. The
ratio ∆T2/∆T1 in the daytime is lower than the ratio in the nighttime, and the amplification is even
bigger in the nighttime. This effect of atmospheric feedback should be considered in policy making for
further afforestation projects, which can help better allocate the afforestation resources.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/5/368/s1,
Figure S1: The experimental design of the two simulations. Figure S2. The difference between online and offline
∆Ts. (a), (c), (e) and (g) represent the results of summer daytime, summer nighttime, winter daytime and winter
nighttime, respectively. The x-axis of the hist plots is the difference between offline ∆Ts and online ∆Ts. Figure
S3. Partition of the daytime intrinsic biophysical effect and atmospheric feedback in summer according to the
IBPM theory. (a) effect of albedo change, (b) energy distribution associated with changes in roughness, (c) energy
distribution associated with changes in Bowen ratio and (d) effect of soil heat flux changes, (e) effect of incoming
shortwave radiation change, (f) effect of incoming longwave radiation change, (g) air temperature related term, (h)
∆Ts calculated offline with the IBPM theory. Figure S4. Partition of the nighttime intrinsic biophysical effect and
atmospheric feedback in summer according to the IBPM theory. (a) effect of albedo change, (b) energy distribution
associated with changes in roughness, (c) energy distribution associated with changes in Bowen ratio and (d)
effect of soil heat flux changes, (e) effect of incoming shortwave radiation change, (f) effect of incoming longwave
radiation change, (g) air temperature related term, (h) ∆Ts calculated offline with the IBPM theory. Figure S5.
Partition of the daytime intrinsic biophysical effect and atmospheric feedback in winter according to the IBPM
theory. (a) effect of albedo change, (b) energy distribution associated with changes in roughness, (c) energy
distribution associated with changes in Bowen ratio and (d) effect of soil heat flux changes, (e) effect of incoming
shortwave radiation change, (f) effect of incoming longwave radiation change, (g) air temperature related term, (h)
∆Ts calculated offline with the IBPM theory. Figure S6. Partition of the nighttime intrinsic biophysical effect and
atmospheric feedback in winter according to the IBPM theory. (a) effect of albedo change, (b) energy distribution
associated with changes in roughness, (c) energy distribution associated with changes in Bowen ratio and (d)
effect of soil heat flux changes, (e) effect of incoming shortwave radiation change, (f) effect of incoming longwave
radiation change, (g) air temperature related term, (h) ∆Ts calculated offline with the IBPM theory.
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41. Janić, Z.I. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model; Office
Note No. 437; National Centers for Environmental Prediction: Washington, DC, USA, 2011; p. 61.

http://dx.doi.org/10.5065/D68S4MVH
http://dx.doi.org/10.1002/joc.3677
http://dx.doi.org/10.1175/1520-0493(1993)121&lt;2794:DOASGR&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1993)121&lt;2814:DOASGR&gt;2.0.CO;2
http://dx.doi.org/10.1111/j.1752-1688.2008.00240.x
http://dx.doi.org/10.3390/w10121710
http://dx.doi.org/10.1038/nature10588
http://dx.doi.org/10.1038/nature13462
http://dx.doi.org/10.1088/1748-9326/11/3/034002
http://dx.doi.org/10.1002/2016JD025094
http://dx.doi.org/10.3402/tellusa.v27i3.9901
http://dx.doi.org/10.1126/science.245.4917.513
http://dx.doi.org/10.1038/ngeo2957
http://dx.doi.org/10.1111/gcb.12856
http://dx.doi.org/10.1002/2017JD027522
http://dx.doi.org/10.1029/2002JD003296
http://dx.doi.org/10.5194/acp-14-5233-2014


Forests 2019, 10, 368 21 of 21

42. Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Briegleb, B.P.; Bitz, C.M.;
Lin, S.J.; Zhang, M.H. The formulation and atmospheric simulation of the Community Atmosphere Model
version 3 (CAM3). J. Clim. 2006, 19, 2144–2161. [CrossRef]

43. Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; McCaa, J.R.; Williamson, D.L.; Kiehl, J.T.; Briegleb, B.;
Bitz, C.; Lin, S.J. Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note
NCAR/TN-464+ STR 2004, 226, 4–9.

44. Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk
parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [CrossRef]

45. Noh, Y.; Cheon, W.G.; Hong, S.Y.; Raasch, S. Improvement of the K-profile model for the planetary boundary
layer based on large eddy simulation data. Bound-Lay. Meteorol. 2003, 107, 401–427. [CrossRef]

46. Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment
processes. Mon. Weather Rev. 2006, 134, 2318–2341. [CrossRef]

47. Eskridge, R.E.; Ku, J.Y.; Rao, S.T.; Porter, P.S.; Zurbenko, I.G. Separating different scales of motion in time
series of meteorological variables. Bull. Am. Meteorol. Soc. 1997, 78, 1473–1483. [CrossRef]

48. Zhao, Y.Y.; Feng, D.L.; Yu, L.; Wang, X.Y.; Chen, Y.L.; Bai, Y.Q.; Hernandez, H.J.; Galleguillos, M.; Estades, C.;
Biging, G.S.; et al. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating
multi-temporal data. Remote Sens. Environ. 2016, 183, 170–185. [CrossRef]

49. Feng, D.L.; Zhao, Y.Y.; Yu, L.; Li, C.C.; Wang, J.; Clinton, N.; Bai, Y.Q.; Belward, A.; Zhu, Z.L.; Gong, P. Circa
2014 African land-cover maps compatible with FROM-GLC and GLC2000 classification schemes based on
multi-seasonal Landsat data. Int. J. Remote Sens. 2016, 37, 4648–4664. [CrossRef]

50. Chinese Meteorological Administration. Specifications for Surface Meteorological Observation; China
Meteorological Press: Beijing, China, 2003.

51. Schultz, N.M.; Lawrence, P.J.; Lee, X. Global satellite data highlights the diurnal asymmetry of the surface
temperature response to deforestation. J. Geophys. Res. Biogeosci. 2017, 122. [CrossRef]

52. Zhang, Q.; Pan, Y.; Wang, S.; Xu, J.; Tang, J. High-Resolution Regional Reanalysis in China: Evaluation of 1
Year Period Experiments. J. Geophys. Res. Atmos. 2017, 122. [CrossRef]

53. Abera, T.A.; Heiskanen, J.; Pellikka, P.; Rautiainen, M.; Maeda, E.E. Clarifying the role of radiative mechanisms
in the spatio-temporal changes of land surface temperature across the Horn of Africa. Remote Sens. Environ.
2019, 221, 210–224. [CrossRef]

54. Rotenberg, E.; Yakir, D. Distinct patterns of changes in surface energy budget associated with forestation in
the semiarid region. Glob. Chang. Biol. 2011, 17, 1536–1548. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1175/JCLI3760.1
http://dx.doi.org/10.1175/1520-0493(2004)132&lt;0103:ARATIM&gt;2.0.CO;2
http://dx.doi.org/10.1023/A:1022146015946
http://dx.doi.org/10.1175/MWR3199.1
http://dx.doi.org/10.1175/1520-0477(1997)078&lt;1473:SDSOMI&gt;2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2016.05.016
http://dx.doi.org/10.1080/01431161.2016.1218090
http://dx.doi.org/10.1002/2016JG003653
http://dx.doi.org/10.1002/2017JD027476
http://dx.doi.org/10.1016/j.rse.2018.11.024
http://dx.doi.org/10.1111/j.1365-2486.2010.02320.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	WRF Modeling 
	Offline Calculations 

	Results 
	Model Evaluation 
	Online versus Offline Surface Temperature Change 
	Seasonal Differences 
	Daytime versus Nighttime 

	Discussion 
	Warming Effect in the Daytime 
	Intrinsic Biophysical Effect versus Atmospheric Feedback 
	Limitations and Future Work 

	Conclusions 
	References

