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Ocean surface energy balance allows a constraint
on the sensitivity of precipitation to global warming
Wei Wang 1,3, T. C. Chakraborty 2,3, Wei Xiao1 & Xuhui Lee2✉

Climate models generally predict higher precipitation in a future warmer climate. Whether

the precipitation intensification occurred in response to historical warming continues to be a

subject of debate. Here, using observations of the ocean surface energy balance as a

hydrological constraint, we find that historical warming intensified precipitation at a rate of

0.68 ± 0.51% K−1, which is slightly higher than the multi-model mean calculation for the

historical climate (0.38 ± 1.18% K−1). The reduction in ocean surface albedo associated with

melting of sea ice is a positive contributor to the precipitation temperature sensitivity. On the

other hand, the observed increase in ocean heat storage weakens the historical precipitation.

In this surface energy balance framework, the incident shortwave radiation at the ocean

surface and the ocean heat storage exert a dominant control on the precipitation temperature

sensitivity, explaining 91% of the inter-model spread and the spread across climate scenarios

in the Intergovernmental Panel on Climate Change Fifth Assessment Report.
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Quantifying the historical change in global precipitation
(P) is an important step towards a credible prediction of
future P intensification. Currently, climate models dis-

agree on the sign and magnitude of the historical P temperature
sensitivity ΔP/ΔT 1. Not helping the matter is the fact that
instrumental records of precipitation are land-biased and are too
noisy to constrain model calculations2,3. Because of the difficulties
in detecting changes with observed precipitation2,3, energy con-
servation is often used as an alternative to understand the global P
trends. The atmosphere will lose more longwave radiation energy
to the Earth’s surface as its temperature increases due to rising
CO2 and as it accumulates water vapor4,5. Some of the loss is
offset by the water vapor absorption of shortwave radiation, but
the majority is balanced by latent heat release accompanied by a
greater P 1,6,7. Although observational constraints regarding the
shortwave absorption exist8, empirical data about the atmo-
spheric longwave loss at the top of the atmosphere (TOA) are still
uncertain9,10. For this reason, it is not possible to estimate the P
change as a residual of the atmospheric energy balance.

Energy balance is also maintained at the Earth’s surface, where
observational data can provide independent constraints on P. A
well-known thermodynamic consequence of greenhouse gas-
induced warming is the increase of water vapor abundance in the
atmosphere. This atmospheric moistening is responsible for about
half of the increase in the longwave radiation4,5 and for almost all
the reduction in the clear-sky shortwave radiation5 or solar
dimming at the Earth’s surface. Other components of the surface
energy balance will also adjust to rising temperatures. Chief
among these are the reduction of ocean albedo a associated with
melting of the sea ice11 (Supplementary Fig. 1) and the shift of the
ocean Bowen ratio (β, the ratio of sensible to latent heat flux)
towards lower values12,13. The historical changes in a and β are
large, but their effects on P are not known.

Here we develop a surface energy balance constraint on the
global hydrological cycle. In this framework, the global pre-
cipitation change is partitioned into contributions from observed

changes in the energy balance terms of the global ocean surface.
We find that historical changes in a, β and surface longwave
radiation intensified global P, and changes in surface shortwave
radiation and ocean heat storage weakened P, with the former
slightly outweighing the latter. We then extend the framework to
diagnose climate model predictions of future P change, revealing
a robust emergent relationship of ΔP/ΔT with two key surface
energy components.

Results
Historical precipitation temperature sensitivity. We hypothe-
size that changes in global precipitation ΔP are driven primarily
by changes in ocean evaporation ΔEO at the annual and longer
time scales. At these time scales, P is balanced by surface eva-
poration. Accordingly, ΔP can be expressed as a proportion to
ΔEO (see “Methods” section). This hypothesis, which is an
inference from the proportionality and is implicit in earlier stu-
dies of P trends14–16, is supported by the tight linear relationship
between ΔP and ΔEO calculated from both climate model simu-
lations and atmospheric reanalysis (Fig. 1b, linear correlation
R > 0.99, confidence level p < 0.001). The underlying mechanism
can be understood with the two interlinked land and ocean
components of the global hydrological cycle (Fig. 1a). Higher
temperatures trigger high rates of ocean evaporation. Most of the
extra water evaporated from the ocean returns to the ocean as
precipitation, and some are transported to land by the atmo-
sphere. The extra water coming from the ocean induces stronger
land precipitation. Enhanced land precipitation, in turn, raises
soil moisture, and consequently land evaporation and runoff also
increase. The role of land evaporation change ΔEL, expressed here
as a ratio φ = ΔEL/ΔEO and termed the land modifier (Eq. (2), see
“Methods” section), is embedded in the slope of the relationship
of ΔP versus ΔEO. A positive correlation is found between φ and
global tree fraction (Supplementary Fig. 2), that is, a lower φ
associated with the conversion of forests to urban land and

Fig. 1 Global precipitation change driven by ocean evaporation. a Two interlinked components of the global hydrological cycle. Arrows 1 to 5 represent
changes in ocean evaporation, ocean precipitation, land precipitation, land evaporation, and runoff, respectively. b, Relationship between global
precipitation change ΔP and ocean evaporation change ΔEO according to CMIP5 model simulations and MERRA-2 reanalysis. The black (reanalysis) and
blue solid line (CMIP models) represent linear regression with statistics noted. The dashed and dotted lines represent the land modifier φ of 0 and 1. The
CMIP results include historical climate (Historical), a low emission scenario (RCP2.6), two medium emission scenarios (RCP4.5 and RCP6.0), a high
emission scenario (RCP8.5), and quadrupling of CO2 experiments (4 × CO2).
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cropland in the historical climate and a higher φ due to forest
regrowth in future climates. This correlation pattern is consistent
with studies showing that forests convert precipitation more to
evaporation and less to runoff than other land cover types17,
although the increase in stomatal resistance18 and lengthening of
the growing season19 in a CO2-enriched condition can also affect
the land hydrological partitioning. But because land comprises
less than 1/3 of the Earth’s total surface area, the land modifier
effect is diminished substantially in the global precipitation
change (Supplementary Table 1).

We combine the ocean surface energy balance (Supplementary
Fig. 3) and the proportionality hypothesis to quantify ΔP/ΔT.
Similar to the investigation of evaporation of inland waters13,
here ΔEO is partitioned into contributions from changes in K↓

(incoming shortwave radiation), L↓ (incoming longwave radia-
tion) a, β, L↑ (outgoing longwave radiation from the ocean
surface), and G (ocean heat storage or heat flux from the ocean
surface into the water column). The full equation for ΔP/ΔT is

ΔP
ΔT

¼ s

(
� ðRn � GÞ

1þ βð Þ2
Δβ

ΔT
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1þ β

Δa
ΔT

þ 1� að Þ
1þ β

ΔK#
ΔT

þ 1
1þ β

ΔL#
ΔT

� 1
1þ β

ΔL"
ΔT

� 1
1þ β

ΔG
ΔT

) ð1Þ

where Rn= (1−α)K↓+ L↓−L↑ is the ocean surface net radiation,
and s is a proportionality coefficient (see “Methods” section). An
advantage of performing energy balance analysis over the oceans
rather than over the whole globe is that ocean evaporation occurs
at the potential rate limited by energy only, whereas land
evaporation is confounded by both soil moisture and energy
availability and is more difficult to determine from observational
data. For this reason, the ocean β can be determined with the
classic Priestley–Taylor model of potential evaporation. As
temperature rises, the vapor pressure at the water surface
increases exponentially according to the Clausius–Clapeyron

equation. This results in a faster change in the sea-air vapor
pressure gradient than in the temperature gradient, and β
decreases16. Using observational constraints, each of the terms of
the energy balance equation is expressed as a function of the
global mean temperature, and its temperature sensitivity is given
by the slope coefficient of the relationship (Supplementary
Table 2). For example, the Bowen ratio temperature sensitivity
Δβ/ΔT of −0.0083 K−1 is obtained from the Priestley–Taylor
model modified on the basis of the Objectively Analyzed Air-sea
Flux data set12. The surface albedo temperature sensitivity Δa/ΔT
is −0.0065 K−1 according to the measurement made by the
Clouds and the Earth’s Radiant Energy System (CERES20;
Supplementary Fig. 1). Scaling the sum of all the component
contributions by the proportionality coefficient s for ΔP versus
ΔEO, we obtain 0.60 ± 0.44Wm−2 K−1 (0.68 ± 0.51% K−1; mean
± 1 S.D) for ΔP/ΔT (see “Methods” section). Ocean albedo change
contributes positively to the overall sensitivity (Fig. 2a). Melting
of the sea ice has long been recognized as positive feedback that
amplifies warming. Our result suggests that the same process may
also increase the global precipitation temperature sensitivity.

One unresolved question is related to the land modifier φ. The
φ value is lower according to the reanalysis data (−0.05) than the
ensemble model mean for the historical climate (0.15; Supple-
mentary Table 1), despite fixed land use and CO2 concentration
in the reanalysis. As mentioned earlier, the estimate of global P
change is not sensitive to φ: use of the climate model mean φ
would increase ΔP/ΔT by only 8%. However, accurate determina-
tion of φ may be important for the land components of the
hydrological cycle.

Energy balance partitioning of modeled precipitation change.
The same ocean surface energy balance equation is used to diag-
nose climate model predictions of ΔP/ΔT using the CMIP5
(Coupled Model Intercomparison Project 5) simulation results
(Fig. 2b–g). Let us first discuss the historical scenario. The

Fig. 2 Component contributions to global precipitation temperature sensitivity. a Results from observations of ocean surface energy balance. b–g
CMIP5 scenarios are labeled at the bottom. According to Eq. (1), global precipitation temperature sensitivity ΔP/ΔT is partitioned into temperature
sensitivity of changes in Bowen ratio, ocean surface albedo, incoming shortwave radiation, net longwave radiation (incoming longwave radiation minus
outgoing longwave radiation), and ocean heat storage. Black: climate model online calculation; red: sum of the five component contributions; yellow:
contribution by Bowen ratio change; blue: contribution by surface albedo change; light blue: contribution by a change in surface downward shortwave
radiation; magenta: contribution by a change in surface net longwave radiation; gray: contribution by a change in ocean heat storage. Error bars are ± one
standard deviation. The magnitude and percentage of ΔP/ΔT are given by the left and the right y axis, respectively. Description of scenarios is given in Fig. 1
caption.
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simulation result for the historical climate (0.33 ± 1.03Wm−2 K−1

or 0.38 ± 1.18% K−1; Fig. 2b) is slightly lower than the observation-
constrained ΔP/ΔT (0.60 ± 0.44Wm−2 K−1) and is within the
statistical uncertainty of each other (one-sample two-tailed t-test
p > 0.12). Compared to the observational constraint, the ensemble
mean albedo contribution to ΔP/ΔT is biased low (Fig. 3b). This
error is compensated by the high bias of the Bowen ratio con-
tribution (Fig. 3a).

The ensemble model mean ΔK↓/ΔT and ΔL↓/ΔT for the
historical scenario are in good agreement with the reanalysis data
(Fig. 3e, f), but large inter-model variations are evident. As the
climate warms, models that predict more dimming of solar
radiation or a more negative ΔK↓/ΔT tend to give stronger
incoming longwave radiation or a more positive ΔL↓/ΔT at the
ocean surface. This compensatory behavior exists across all the
models and all the climate scenarios (R = −0.830, p < 0.001,
number of model simulations N = 175; Supplementary Fig. 4). If
considered alone, the shortwave contribution to ΔP/ΔT shows a
large spread of 1.27Wm−2 K−1 (1 S.D. across all model
simulations, Fig. 3g). By combining the contributions of all
wavelengths (sum of terms 3 and 4, Eq. (1)), the spread becomes
0.79Wm−2 K−1, or a 38% reduction in uncertainty. These results
support the view that climate models seem to perform better for

composite thermodynamic variables—in this case, the all-wave
radiation—than for the individual variables that make up the
composites21.

The tight and negative relationship between ΔK↓/ΔT and ΔL↓/
ΔT can be considered as an emergent property of the earth system
models. A full cancellation between the surface shortwave and
longwave effects requires the slope of ΔK↓/ΔT versus ΔL↓/ΔT to
be equal to −1. The actual slope is about −2, meaning that the
dimming of solar radiation K↓ outweighs the strengthening of
incoming longwave radiation L↓. The overall result is a reduced
precipitation temperature sensitivity if modeled dimming is too
strong, and vice versa. Three mechanisms are known to cause a
negative relationship between ΔK↓ and ΔL↓. Atmospheric
moistening at higher temperatures reduces K↓ slightly and
increases L↓ by four times as much5 (Supplementary Fig. 4).
The decrease in cloud cover causes a positive ΔK↓ and a negative
ΔL↓. Aerosols generally reduce K↓ and can enhance L↓ slightly if
their size coincides with the wavelengths of the thermal
atmospheric window22. Evidence points to cloud cover as the
dominant cause of this emergent property. This is because clouds
have much stronger surface radiative effects than aerosols23,24.
Furthermore, the strength of the negative cloud shortwave
radiative effect is approximately twice that of the positive cloud

Fig. 3 Relationship between global precipitation temperature sensitivity and temperature sensitivity of surface energy balance components. c, d,
g, h Relationship between precipitation temperature sensitivity (ΔP/ΔT) and contribution from change in Bowen ratio β [−(Rn− G)/(1+ β)2/(Δβ/ΔT)],
surface albedo a [−K↓/(1+ β)(Δα/ΔT)], surface downward shortwave radiation K↓ [(1− α)/(1+ β)(ΔK↓/ΔT)] and surface downward longwave radiation
L↓ [1/(1+ β)(ΔL↓/ΔT)]. a, b, e, f Gaussian probability distribution of the component contribution. The observational range (mean ± one standard deviation)
is denoted by the gray bar. Solid lines are regression fit. Other variables are Rn ocean surface net radiation, G ocean heat storage. Description of model
scenarios is given in Fig. 1 caption.
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longwave radiative effect20,23, giving a ratio in good agreement
with the regression slope of ΔK↓/ΔT versus ΔL↓/ΔT. Radiative
column calculations suggest that this 2:1 ratio is a radiative
property of low clouds5.

Surface solar radiation change is a large contributor to the
spread of ΔP/ΔT across scenarios. The RCP2.6 scenario has the
highest ensemble mean ΔP/ΔT (2.27Wm−2 K−1; Fig. 2c). In this
scenario, the mean ΔK↓/ΔT is actually positive (0.46Wm−2 K−1),
indicating surface brightening as the temperature increases. The
lowest ensemble mean ΔP/ΔT (0.33Wm−2 K−1) is found for the
historical scenario in which a unit rise in temperature creates the
strongest surface dimming (ΔK↓/ΔT = −1.70Wm−2 K−1).

Another contributor to the inter-scenario spread is the change
in ocean heat storage. In the 4 × CO2 scenario, a reduction in P
occurs at the beginning of the experiment1,8. This reduction can
be interpreted from the surface energy balance perspective. The
sudden quadrupling of atmospheric CO2 causes a large radiation
imbalance at the top of the atmosphere and similarly large heat
flux into the ocean (multi-model mean G = 6.52Wm−2 in the
first 10 simulation years). This results in less energy available at
the surface to support ocean evaporation, and global P declines.
At the end of the experiment, G approaches zero as the climate
system reestablishes equilibrium, giving rise to a negative ΔG/ΔT.
In the historical scenario and future scenarios with a progressive
rise in CO2 (RCP4.6, RCP6.0, and RCP8.5), the role of ocean heat
storage is to suppress ΔP/ΔT (Fig. 2b, d–f). In contrast, the
change in G enhances ΔP/ΔT in the 4 × CO2 scenario, contribut-
ing to a very high-value ΔP/ΔT of 2.23 ± 0.26Wm−2 K−1

(Fig. 2g).

An emergent property of global precipitation. The energy bal-
ance analysis reveals another emergent property of the earth
system models: the incoming solar radiation at the ocean surface
K↓ and ocean heat storage G are the two energy terms that exert
a dominant control on the global precipitation temperature
sensitivity. The combined contribution of these two variables is
highly linear with ΔP/ΔT and explains 91% of the inter-model
and inter-scenario variations in ΔP/ΔT (Fig. 4a). Most notably,
the combination collapses the 4 × CO2 results onto the same
linear relationship that depicts the other transient scenarios. In
the 4 × CO2 scenario, the K↓ temperature sensitivity alone is a
poor predictor of ΔP/ΔT (R = 0.29, p = 0.17, N = 25). However,
the correlation becomes significant when both K↓ and G are
considered (R = 0.808, p < 0.001, N = 25). In an out-of-sample
test, we find that the linear fit line describes reasonably well a
CMIP6 model ensemble (Supplementary Fig. 5c).

The emergent relationship in Fig. 4a provides an additional
constraint on the historical ΔP/ΔT. Using the observed ΔK↓/ΔT
and ΔG/ΔT and the fitting equation in Fig. 4a, we obtain a slightly
lower estimate of the historical ΔP/ΔT (0.51 ± 0.21Wm−2 K−1)
than the energy balance constraint (0.60 ± 0.44Wm−2 K−1).

Discussion
Our results based on the surface energy consideration can be put
into the context of atmospheric energy conservation. In the
atmosphere, the latent heat released by P change is balanced by
changes in shortwave radiation absorption of the atmosphere, in
its longwave radiation loss, and in the sensible heat flux from the
surface1,6,7. To facilitate comparison between these two energy
perspectives, we note that the TOA radiation imbalance can be
approximated by the ocean heat storage G because G explains
~90% of the imbalance historically25 and more in the future26.
Previous findings on the role of atmospheric energy components
are broadly consistent with the results presented here. The finding
that the absorbed shortwave largely controls inter-model spread

in ΔP/ΔT in abrupt CO2 (4 × CO2 and 2 × CO2) scenarios8,27 is
supported by the ΔP/ΔT correlation with K↓ change (Fig. 3g). The
role of sensible heat flux in the historical P change28 can be
understood through the correlation with the change in β (Fig. 3c).
The importance of atmospheric longwave cooling documented
for a future transient climate5 and for the historical climate29 is
manifested in the correlation with changes in G (Fig. 5c) and L↓
(Fig. 3h) because a longwave loss to outer space is a large con-
tributor to the TOA energy imbalance (and hence to G). How-
ever, when examined individually, these energy components
generally lack consistency between within-scenario and inter-
scenario variations. For example, the relationship between L↓
change and ΔP/ΔT is positive for the 4 × CO2 scenario (R = 0.25)
but is negative across scenarios (Fig. 3h). In contrast, consistency
is achieved if the incoming shortwave at the ocean surface and the
ocean heat storage are combined (Fig. 4a). Since ΔK↓ is
approximately equal to the change in atmospheric absorption of
shortwave minus the change in the TOA net shortwave radiation,
and ΔG is an approximation of the change in the total net
radiation at the TOA, a physical interpretation of the emergent
relationship in Fig. 4a is that shortwave absorption (a known
source of model spread8,30) and longwave loss at the TOA5

dominate the modeled P change.
The relationship in Fig. 4a reveals additional diagnostic

insights regarding the energy constraints on global P. It suggests
that strong compensatory behaviors exist among thermodynamic
processes in the climate system. For example, warming and
moistening of the atmosphere give rise to predictable increases in
L↓ 4,5, but because L↓ and K↓ are tightly coupled (Supplementary
Fig. 4), the inclusion of the L↓ contribution does not bring much
improvement to the relationship except for rectifying one outlier
(Fig. 4c). (The increase in R2 is marginal, from 0.910 in Fig. 4a to
0.912 in Fig. 4c) A numerical perturbation experiment suggests
that change in K↓ may also be coupled with change in β through
changes in low-cloud cover31. That ΔG/ΔT emerges as a domi-
nant control of ΔP/ΔT supports the view that monitoring the
ocean heat content could be the best strategy available to con-
strain future P change6. Since global dimming is the other
dominant contributor, long-term monitoring of solar radiation at
the earth’s surface, especially at marine locations, should provide
another strong constraint on P.

Figure 4a implies a connection between the P temperature
sensitivity and the strength of climate feedback. In the abrupt
4 × CO2 scenario, the TOA radiation imbalance decreases and the
surface temperature increases over time after the sudden CO2

rise. In the paradigm of radiative forcing versus climate feedback,
the slope of the TOA radiation imbalance versus surface air
temperature is a measure of the feedback strength32. Since G
accounts for a great majority of the imbalance, the magnitude of
ΔG/ΔT obtained from 4 × CO2 simulations can be regarded as a
good approximation of the feedback strength. We find that
among the CMIP5 ensemble of models, those with a stronger
feedback strength tend to give a higher ΔP/ΔT in the 4 × CO2

scenario (R = 0.41, p < 0.05; Fig. 5a). This positive correlation
between the hydrological climate sensitivity and the feedback
strength is also evident from simulations with one CMIP5 model
member (MIROC5) under different states of perturbed ocean
evaporation33. The feedback strength on its own, however, has a
limited ability of explaining inter-model variations for the his-
torical climate and for future transient scenarios (Supplementary
Fig. 6).

Opinions are divided as to whether climate models
overestimate33 or underestimate future ΔP/ΔT34. Here, we ranked
the CMIP5 models according to how close their historical values of
ΔK↓/ ΔT and ΔG/ΔΤ are to the observed values and analyzed the
results of 1/3 of the models that rank closest to these observations.
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This sub-ensemble mean ΔP/ΔT is lower than the whole ensemble
mean by 4% (for 4 × CO2) to 19% (for RCP2.6). However, this
result should be interpreted with caution because the correlations
between historical and future contributions from ΔK↓ and ΔG
across models are statistically insignificant (R in the range −0.07
for RCP4.5 to 0.18 for 4 × CO2; p > 0.05). The lack of good cor-
relation suggests that mechanisms that change the surface energy
balance may be different between historical and future climates.
For example, according to the CMIP5 models, a unit rise in
temperature results in less surface solar dimming in the future than
in the past (Fig. 3e) despite a similar rate of water vapor buildup of
about 7% K−1 6,35–37, in part due to differences in aerosols38. It
appears that models that are more realistic for the historical cli-
mate do not necessarily perform better for future climates.

Our diagnostic analysis (via Eq. (1)) is restricted to the global
scale. Even though it has shed light on the manifestation of
interactions among energy variables, a mechanistic understanding
of the nature of these interactions will require a more granular
examination at local and regional levels. Rising temperatures will
decrease ocean β 12,16. Since β is already very low for mid- to low-
latitude ocean regions (about 0.13 between 60° S and 60° N), this
thermodynamic response is more important for high-latitude
regions where the high β (about 0.70 north of 60° N and south of
60° S) allows more room for energy allocation shift from sensible
heat to latent heat as evident in historical climate simulations28.
On the other hand, the high β may counteract the increase of
radiation energy available for evaporation via a reduction in polar
waters. Additionally, changes in K↓ and a at high latitudes are

Fig. 4 Emergent constraint on global precipitation temperature sensitivity. a Control of surface incoming shortwave radiation (K↓) and ocean heat
storage (G) on the spread of climate model simulations of precipitation temperature sensitivity (ΔP/ΔT). The x axis is the combined contribution from
changes in K↓ and G, as ð1� aÞ=ð1þ βÞðΔK#=ΔTÞ � 1=ð1þ βÞðΔG=ΔTÞ. Solid line represents the best fit with the regression statistics noted. (The outlier is
excluded from the regression.) Dashed lines are the 95% confidence bounds. The two vertical and horizontal parallel lines indicate the observational
constraint. b Gaussian probability distribution of precipitation temperature sensitivity. The gray horizontal bar denotes the observational range (mean ±
one standard deviation). c Same as a except that the surface incoming longwave radiation (L↓) is included as a controlling variable, as
ð1� aÞ=ð1þ βÞðΔK#=ΔTÞ þ 1=ð1þ βÞðΔL#=ΔTÞ � 1=ð1þ βÞðΔG=ΔTÞ. Description of model scenarios is given in Fig. 1 caption.
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positively correlated in the CERES data and across the CMIP5
models (Supplementary Fig. 7), consistent with the observation of
greater cloud cover during low-ice years near the North Pole39.
Thus, change in regional K↓ is another process that may coun-
teract the albedo effect on global P. At low latitudes, cloud cover
change can also influence P. Climate models with a higher
equilibrium climate sensitivity are shown to have a more positive
low-cloud feedback40–42 and agree better with constraints pro-
vided by the cloud behaviors observed in tropical and subtropical
oceans than lower sensitivity models43–45. Several mechanisms
are known to reduce cloud cover in these regions in a future
warmer climate, including the breakup of stratocumulus cloud
decks46, aggregation of deep convective clouds47, and high cloud
shrinkage associated with tightening of the ascending branch of
the Hadley Circulation34. The ocean surface K↓ will increase in
response to the reduction in cloud cover, but it is not known if
this increase is large enough to offset the dimming caused by
rapid water vapor buildup in the tropical and subtropical atmo-
sphere so as to result in a net increase in P. Numerical pertur-
bation experiments may be necessary to disentangle the role of
these interactive regional processes in the global P response.

Methods
Relationship between global precipitation and ocean surface energy balance.
The residence time of water in the atmosphere is about one week48. At the annual
and longer time scale, mass conservation requires that global precipitation be
balanced by surface evaporation. Additionally, three corollaries of the conservation
principle apply to the two interlinked components of the hydrological cycle
(Fig. 1a): ocean evaporation is equal to the sum of ocean precipitation and water
transport to land by the atmosphere, land precipitation is equal to the sum of land
evaporation and river runoff to the ocean, and river runoff is equal to atmospheric
transport. Using these equality relationships, we obtain

ΔP ¼ fLφþ 1� fL
� �

ΔEO ð2Þ

where Δ denotes change between two-time intervals, P is mean global precipitation
rate and EO is mean ocean evaporation rate (both expressed in W m−2), fL is land
fraction (=0.29), and φ = ΔEL/ΔEO is the land modifier with EL representing mean
land evaporation rate. The temperature sensitivity of global precipitation is given
by

ΔP
ΔT

¼ s
ΔEO
ΔT

¼ fLφþ 1� fL
� �ΔEO

ΔT
ð3Þ

The proportionality coefficient s is weakly dependent on the land modifier. If
φ= 1 or EL changes at the same rate as EO, s would be at the upper limit of unity. If
EL remains fixed over time or φ= 0, s would be reduced to 0.71. The actual s values,
based on linear regression of climate model results and MERRA-2 reanalysis data,
are given in Supplementary Table 1.

The ocean evaporation flux, expressed in the form of latent heat consumption,
is in balance with other component fluxes of the ocean surface energy balance
(Supplementary Fig. 3). Specifically,

Rn ¼ 1� að ÞK# þ L# � L" ¼ H þ EO þ G ð4Þ
or

EO ¼ 1� að ÞK# þ L# � L" � G

1þ β
ð5Þ

where Rn is net radiation, K↓ is incoming solar radiation flux at the ocean surface, a
is ocean surface albedo, L↓ and L↑ are incoming and outgoing longwave radiation
flux, respectively, G is heat flux from the atmosphere to the water column, and β is
Bowen ratio or the ratio of sensible heat to latent heat flux. In the diagnostic
analysis presented above, the energy fluxes in Eq. (5) are area-weighted ocean mean
values, a is the ratio of area-weighted mean reflected to incoming solar radiation,
and β is the ratio of area-weighted mean sensible to latent heat flux. Because the
lateral transport of heat via ocean currents is zero at the global scale, G is equivalent
to the change in the ocean heat content or heat storage. For these reasons, Eq. (5) is
exact at the global scale.

Expressing Eq. (5) in finite-difference form13 and combining with Eq. (2), we
obtain Eq. (1). Equation (1) is the basis for the quantification of historical ΔP/ΔT
from observational data and for diagnostic analysis of climate model results.

Our analytical framework can be considered an extension of the work by Siler
et al.16 who decomposed future P change with the ocean surface energy balance
equation. In their study, the thermodynamic response, or shift of energy allocation
from sensible heat to latent heat, consists of a change in the equilibrium Bowen
ratio and changes in boundary layer dynamics/relative humidity. It can be shown
that their diagnostic equation (their Eq. (16), without the boundary layer term) is
identical in form to the terms in the curly brackets of Eq. (1). In this study, the
thermodynamic response is determined with the Bowen ratio from the modified
Priestley–Taylor model of ocean evaporation12 and the actual Bowen ratio from
sensible heat and latent heat fluxes calculated by climate models. Because the actual
Bowen ratio is less sensitive to temperature than the theoretical equilibrium Bowen
ratio, this thermodynamic contribution to the global P change is smaller in our
assessment. Additionally, we have introduced a land modifier to account for the
land evaporation contribution to global P.

Observational constraints on historical precipitation temperature sensitivity.
The temperature sensitivity of the terms in Eq. (1) was determined from their
observed relationships with global mean temperature (Supplementary Table 2). (a)
Ocean albedo a: The annual a is the ratio of the area-weighted annual mean
outgoing shortwave radiation to incoming shortwave radiation observed at the
global ocean surface by the Clouds and the Earth’s Radiation Energy System
(CERES Edition 4.1 20). The temperature sensitivity of a was calculated as the
regression slope of a against the global mean temperature anomaly (the GISS
Surface Temperature Analysis; GISTEMP v4) from 2001 to 2018 (Supplementary
Fig. 1). The uncertainty (one standard deviation) is approximated by ½ of the 95%
confidence bound on the regression slope. (b) Ocean Bowen ratio (β): according to
the modified version of the Priestley–Taylor model on the basis of the Objectively
Analyzed Air-sea Flux data set12, oceanic β is inversely proportional to the slope of
the saturation vapor pressure versus temperature T. The β temperature sensitivity
was obtained from the derivative of this function with respect to T and evaluated at

Fig. 5 Relationship between global precipitation temperature sensitivity and temperature sensitivity of ocean heat storage. a Dependence of
precipitation temperature sensitivity (ΔP/ΔT) on climate feedback strength for the 4 × CO2 scenario. The climate feedback strength is approximated
by a negative value of temperature sensitivity of ocean heat storage (−ΔG/ΔT) from 4 × CO2 scenario. b Gaussian probability distribution of the ocean
heat storage (G) contribution to ΔP/ΔT. c Relationship between precipitation temperature sensitivity and G contribution [�1=ð1þ βÞðΔG=ΔTÞ] across
models and scenarios. The observational range (mean ± one standard deviation) is denoted by the gray bar. Solid lines are regression fit. The regression
slope in c (0.982) is increased to 1.290 if the 4 × CO2 results are excluded. Description of model scenarios is given in Fig. 1 caption.
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the observed global mean temperature. It was computed for each year, and
the spread corresponds to one standard deviation of the interannual variability.
(c) Incoming solar radiation K↓: We used four atmospheric reanalysis datasets
(NOAA-CIRES, NCEP-NCAR, JRA-55, and ERA-5; Supplementary Table 3) to
determine ΔK↓/ΔT. We first established a linear relationship between the
annual area-weighted K↓ over the ocean grids and the annual mean global 2-m air
temperature from the same reanalysis. The slope of the relationship was taken as
ΔK↓/ΔT. We then adjusted the slope value slightly by the percent bias of the
reanalyzed K↓ in reference to the CERES K↓ for the common period (2005–2013).
The ΔK↓/ΔT values given in Supplementary Table 2 are the mean and standard
deviation of the four reanalysis datasets. MERRA-2 is excluded because its ΔK↓/ΔT
(−9.16Wm−2 K−1) is too negative. Changes in K↓ due to CO2 absorption are
negligible49. (d) Incoming longwave radiation L↓: The L↓ temperature sensitivity
was also obtained from the reanalysis products (MERRA-2 included) and with
calibration against the CERES L↓ value. In the reanalysis, atmospheric CO2 con-
centration is fixed over time. According to a column radiative calculation, doubling
of atmospheric CO2 increases L↓ by 1.38Wm−2 49. Assuming ΔT = 3.2 ± 1.3 K at
CO2 doubling50, this gives an additional sensitivity of 0.43 ± 0.11Wm−2 K−1. The
ΔL↓/ΔT value in Supplementary Table 2 has included this CO2 effect. (e) Outgoing
longwave radiation L↑: The L↑ temperature sensitivity was given by the derivative of
the Stefan–Boltzmann law. The calculation was done annually using the observed
global mean temperature. Its uncertainty corresponds to one standard deviation of
the interannual variability. (f) Ocean heat storage G: ΔG/ΔT was obtained by a
quadratic fit of the ocean heat content51 (OHC, in J) against time (t) as OHC =α0
+ α1t+ α2t2. The first derivative of OHC with respect to t gives heat storage change
or total heat flux (in W) into the water column, and the second derivative (or a2)
represents the time rate of change of this total heat flux. Dividing the coefficient of
the quadratic term α2 by the ocean area gives the time rate of change of the heat
flux into the water column per unit surface area (in W m−2 s−1), and by multi-
plying this rate by the length of the observational period (1955–2017), we obtained
ΔG. The uncertainty on ΔG was estimated as ½ of the 95% confidence bound on α2.
We then estimated ΔG/ΔT by dividing ΔG with the temperature change ΔT of
0.774 K observed over the same period according to GISTEMP v4.

We determined the historical ΔP/ΔT with Eq. (1) using the sensitivity and the
mean ocean surface flux values given in Supplementary Table 2 and the
proportionality coefficient s determined from MERRA-2. In Fig. 1b, the MERRA-2
ΔP and ΔEO are deviations of the annual mean P and EO of a given year from their
counterparts in 1985, the year with the lowest P. MERRA-2 was chosen for fixing s
because this reanalysis model maintains atmospheric moisture conservation52,
which is a prerequisite for Eq. (1). In the other reanalysis products, the global total
precipitation can deviate from the global total evaporation by as much as 14%.

The uncertainty of ΔP/ΔT was determined with a Monte Carlo method
involving 1,000,000 ensemble members. For each member, each term on the right-
hand side of Eq. (1) was the sum of its mean value (Supplementary Tables 1 and 2)
and a random error produced by a random number generator. This error was
assumed to vary independently from other terms and according to a normal
distribution with the standard deviation given in Supplementary Table 1 or 2. The
uncertainty of ΔP/ΔT was calculated as one standard deviation of the ensemble
after the top and bottom 0.5% of outliers were excluded.

The linear correlations of L↓ and K↓ with T are highly significant (p < 0.0001)
for all the five reanalysis products. Although strictly reanalysis L↓ or K↓ are model-
derived, the reanalysis model calculations have ingested observational data on
temperature, humidity, and cloud, and therefore provide realistic surface radiation
fields53. Additionally, reanalysis models deploy more accurate codes for shortwave
radiation transfer than earth system models8. We note that of the five reanalysis
products, only NOAA-CIRES extends back in time to coincide roughly with the
period of CMIP5 historical simulations. If we use the NOAA-CIRES ΔK↓/ΔT
(−2.36Wm−2 K−1) and ΔL↓/ΔT (6.71Wm−2 K−1, adjusted for the CO2 effect),
the historical ΔP/ΔT will decrease slightly to 0.37Wm−2 K−1.

Diagnostic analysis of CMIP5 model results. Equation (1) was used to separate
the P temperature sensitivity in CMIP models into component contributions. The
results presented in the main text were based on one ensemble member (r1i1p1)
from six CMIP5 experiments (Historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5, and
4 × CO2) with a total of 176 model simulations (Supplementary Table 4). To per-
form an out-of-sample test, we also analyzed one ensemble member (r1i1p1f1) of
one CMIP6 experiment (ssp585). Scenario ssp585 is an energy and resource-
intensive socioeconomic scenario for the 21st century resulting in a similar 2100
radiative forcing (8.5Wm−2) as its CMIP5 predecessor RCP8.5. Here, Δ denotes
the difference in a variable between the mean of the last 10-years and that of the first
10-years of the model simulation. In the 4 × CO2 scenario, ΔP/ΔT is equivalent to
the hydrological sensitivity parameter defined by Fläschner et al.1 and represents the
slow response of P to warming (Supplementary Fig. 8). The P response to warming
analyzed by Siler et al.16 is similar to the apparent hydrological sensitivity given by
Fläschner et al.1. Fast P adjustment, taken as the y intercept of the P versus tem-
perature regression for the 4 × CO2 simulation in reference to piControl1, and fast P
response (the P difference between sstClim and sstClim4 × CO2 simulations16) are
not considered in this study.

The G term is the net heat flux entering the liquid water column plus a small
amount of energy consumption due to ice melt at high latitudes. In the above

diagnostic analysis, G was calculated as the residual of the ocean surface energy
balance equation G = Rn − H − Eo (Supplementary Fig. 3). The surface net
radiation (Rn) and the ocean sensible (H) and latent heat flux (Eo) were obtained
from the atmospheric data set archived for each model simulation. This residual
calculation ensures that energy is conserved in our diagnostic analysis.

Both online and offline ΔP/ΔT values are presented in Fig. 2 and Supplementary
Fig. 5. The online value is calculated from the modeled ΔP and ΔT. The offline value
is the sum of the component contributions according to Eq. (1). The ensemble mean
online and offline values are in excellent agreement for all the scenarios except the
historical climate. The offline historical mean is 0.52 ± 0.81Wm−2 K−1, whereas
the online historical mean is slightly lower, at 0.33 ± 1.03Wm−2 K−1, but the
difference is not statistically significant (two-tailed t-test p = 0.42). The consistency
between the online and offline calculations indicates that Eq. (1) is a robust
decomposition procedure and that errors in the global ΔP/ΔT arising from spatial
averaging of input variables may be small. The offline ΔP/ΔT from the surface
energy balance (Eq. (1)) for the 4 × CO2 scenario (2.18 ± 0.21Wm−2 K−1; Fig. 2g)
agrees well with the ΔP/ΔT diagnosed from the atmospheric energy balance
(2.03Wm−2 K−1 1), offering further support for the surface diagnostic method.

To further investigate possible errors due to spatial averaging, we performed a
regional diagnostic analysis using CMIP historical simulations. At regional and local
scales, the heat flux from the atmosphere to the water column G consists of lateral
heat transport by ocean currents and time change in local ocean heat content54.
Regional analysis is not feasible with observational data because no gridded data
exist on the transport term, but it can be done with CMIP modeling outputs as the
modeled G includes both lateral heat transport and local heat storage. In this
analysis, the ocean grids were divided into two groups: those belonging to mid- and
low-latitude regions (between 60° S and 60° N) and those belonging to high-latitude
regions (north of 60° N and south of 60° S). The decomposition was performed for
each group and the result was weighted by the area fraction of each to obtain a
global mean value (Supplementary Fig. 9). The albedo contribution from the two-
region analysis is smaller than that from the global analysis. The reduction in the
albedo component is offset by less negative contributions from changes in
shortwave radiation and in ocean heat storage. The total ΔP/ΔT is unaffected, as ΔP/
ΔT from the two-region analysis (0.51 ± 0.76Wm−2 K−1; Supplementary Fig. 9b) is
nearly identical to that from the global analysis (0.52 ± 0.81Wm−2 K−1;
Supplementary Fig. 9a).

Data availability
The data used in this study are available at the following public websites: CMIP5 data at
https://esgf-node.llnl.gov/search/cmip5/, CMIP6 data at https://esgf-node.llnl.gov/search/
cmip6/, NOAA-CIRES and NCEP-NCAR reanalysis at https://psl.noaa.gov/, JRA-55
reanalysis at https://rda.ucar.edu/, ERA-5 reanalysis at https://cds.climate.copernicus.eu/,
MERRA-2 reanalysis at https://esgf-node.llnl.gov/search/create-ip/, CERES observations
(Edition 4.1) at https://ceres.larc.nasa.gov/data/, global ocean heat content observations
at http://159.226.119.60/cheng/, and GISS Surface Temperature Analysis (GISTEMP v4)
at https://data.giss.nasa.gov/gistemp/. The data used to produce Figs. 1–5 and
Supplementary Figures are available from the authors upon request.

Code availability
The codes used for data analysis are available from the authors upon reasonable request.
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Supplementary Figure 1. Ocean surface albedo as a function of global mean 2-m 
temperature. The annual ocean surface albedo is the ratio of the area-weighted mean 
outgoing shortwave radiation to the incoming shortwave radiation observed by the 
Clouds and the Earth’s Radiation Energy System (CERES Edition 4.1, 
https://ceres.larc.nasa.gov/data/). Global mean temperature anomalies are from GISS 
Surface Temperature Analysis (GISTEMP v4,  
https://data.giss.nasa.gov/gistemp/). The solid line represents linear regression with the 
regression statistics noted (N, number of years; R, linear correlation coefficient). 
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Supplementary Figure 2. Relationship between the land modifier (φ) and tree 
fraction change. The solid line represents linear regression with the regression 
statistics noted (N, number of experiments; R, linear correlation coefficient). Error 
bars are ± one standard deviation. Description of model scenarios is given in Figure 1 
caption. 
 

 
 



Supplementary Figure 3. Components of the global ocean surface energy 
balance. The flux is positive in the direction indicated and negative if it goes against 
the direction shown. a – albedo; β – Bowen ratio; net radiation 𝑅𝑅𝑛𝑛 = (1 − 𝑎𝑎)𝐾𝐾↓ +
𝐿𝐿↓ − 𝐿𝐿↑.  

 

 

 
 
  



Supplementary Figure 4. Interdependence between temperature sensitivities of 
incoming shortwave (∆K↓/∆T) and longwave radiation (∆L↓/∆T) at the ocean 
surface. The solid line represents linear regression with the regression statistics noted 
(N, number of model experiments; R, linear correlation). One outlier, marked by light 
blue filled triangle with the model name noted, is excluded from the statistical 
calculation. The white circle with error bars (± 1 standard deviation) denotes the 
observational constraint. The white square denotes sensitivities due to atmospheric 
moistening under clear skies1. Description of model scenarios is given in Figure 1 
caption. 
 

 
  



Supplementary Figure 5. Comparison between CMIP5 RCP8.5 and CMIP6 
ssp585 scenarios. a, Component contributions to global precipitation temperature 
sensitivity (∆P/∆T). Error bars are ± one standard deviation. b, Relationship between 
changes in global precipitation ∆P and ocean evaporation ∆EO, with regression 
statistics indicated (N, number of model experiments; R, linear correlation). c, 
Emergent constraint on global precipitation temperature sensitivity, where the x-axis 
is the same as in Figure 4a. Solid line represents the regression equation in Figure 4a. 
Description of model scenarios is given in Figure 1 caption. 
 

 

 

  



Supplementary Figure 6. Dependence of precipitation temperature sensitivity 
(∆P/∆T) on feedback strength. Here, the feedback strength α is approximated by the 
negative value of temperature sensitivity of ocean heat storage (-∆G/∆T) from a 
4×CO2 simulation using the same models. The solid lines represent linear regression 
with the regression statistics noted (R, linear correlation), Description of model 
scenarios is given in Figure 1 caption. 
 

 
  



Supplementary Figure 7. Relationship between ocean albedo and ocean incoming 
shortwave radiation at high latitudes (north of 60o N and south of 60o S). a, annual 
mean ocean albedo a versus annual mean incoming shortwave radiation K↓ according 
to the CERES observation (https://ceres.larc.nasa.gov/data/). b, inter-model spread in 
the a and K↓ temperature sensitivities for CMIP5 historical simulations. The solid 
lines represent linear regression with the regression statistics noted (N, number of year 
in panel a and model experiments in panel b; R, linear correlation). 
 

 

  

https://ceres.larc.nasa.gov/data/


Supplementary Figure 8. Comparison of different definitions of the hydrological 
climate sensitivity. Data points are annual mean values from the IPSL-CM5A-LR 
model simulations for three climate scenarios. Solid red circles denote the first and 
last 10 years of the 4×CO2 simulation. Red pluses denote the 10-year mean values. In 
the present study, the slope of P versus T is approximated by precipitation temperature 
sensitivity ∆P/∆T. 

 
  



Supplementary Figure 9. Comparison of regional and global analysis using 
CMIP5 historical simulations. a, Component contributions to global precipitation 
temperature sensitivity ∆P/∆T calculated with Equation (1) using global mean values 
as inputs. b, Component contributions from a regional diagnostic analysis, where 
Equation (1) was applied separately to polar (north 60o N and south of 60o S) and non-
polar grids (between 60o N and of 60o S), and the result was weighted by the area 
fraction of each group to give the global mean value. Red: sum of the five component 
contributions; yellow: contribution by Bowen ratio change; blue: contribution by 
surface albedo change; light blue: contribution by change in surface downward 
shortwave radiation; magenta: contribution by change in surface net longwave 
radiation; grey: contribution by change in ocean heat storage. Error bars are ± one 
standard deviation. 
 

 
  



Supplementary Table 1. Regression of changes in global precipitation and in 
ocean evaporation. For each CMIP scenario, s is the slope of linear regression 
between changes in global precipitation (ΔP) and ocean evaporation (ΔEO) across 
models (with intercept forced through zero), where ΔP and ΔEO are differences in 
global precipitation and ocean evaporation, respectively, between the last and the first 
10-years of each model simulation. For MERRA-2, s is the slope of linear regression 
between annual global P and global Eo (with intercept forced through zero). 
Uncertainty range is ± one standard deviation, estimated as half of the 95% 
confidence bound on the regression slope. N – number of models (climate scenarios) 
or number of years (reanalysis); φ－land modifier, the ratio of land evaporation 
change to ocean evaporation change; R－linear regression coefficient. All correlations 
are significant at p < 0.001. 
 

 N s φ R 

Climate model scenario 

CMIP5 Historical 36 0.754±0.054 0.152±0.185 0.987 

CMIP5 RCP2.6 25 0.822±0.027 0.385±0.094 0.986 

CMIP5 RCP4.5 34 0.821±0.027 0.381±0.093 0.966 

CMIP5 RCP6.0 19 0.825±0.047 0.395±0.163 0.946 

CMIP5 RCP8.5 37 0.783±0.025 0.253±0.085 0.952 

CMIP5 4×CO2 25 0.762±0.013 0.180±0.046 0.984 

CMIP6 ssp585 18 0.842±0.039 0.455±0.136 0.962 

Reanalysis 

MERRA-2 38 0.695±0.013 -0.051±0.045 0.992 
 
 



Supplementary Table 2. Empirical constraints on the energy balance components 
at the ocean surface. Refer to Figure S3 for symbol definitions.  
 

Variable Mean S.D. Reference or data source 

  

Temperature sensitivity 

∆𝛽𝛽
Δ𝑇𝑇

 (K-1) -0.00834 0.000188 Yang & Roderick (ref. 2) 

∆𝑎𝑎
Δ𝑇𝑇

 (K-1) -0.00653 0.00147 CERES; Kato et al (ref. 3) 

∆𝐾𝐾↓
Δ𝑇𝑇

 (W m-2 K-1) -2.93 0.276 Reanalysis products 

∆𝐿𝐿↓
Δ𝑇𝑇

 (W m-2 K-1) 7.51 0.672 Reanalysis products  

∆𝐿𝐿↑
Δ𝑇𝑇

 (W m-2 K-1) 5.24 0.0191 Stefan-Boltzmann Law 

∆𝐺𝐺
Δ𝑇𝑇

 (W m-2 K-1) 0.625 0.0257 Cheng et al. (ref. 4) 

  

Ocean energy balance components 

Rn-G (W m-2) 116  

Wild et al. (ref. 5) 
K↓ (W m-2)  185  

a 0.0811  

β 0.160  

 



Supplementary Table 3. Sensitivity of incoming surface shortwave K↓ and 
longwave radiation L↓ to global temperature T. The sensitivity value is calculated 
as the regression slope of the annual mean K↓ or L↓ over ocean grids against the 
global mean temperature and adjusted slightly to remove the bias in K↓ or L↓ in 
reference to the CERES value (https://ceres.larc.nasa.gov/data/). Also shown is the 
coefficient of determination R2. All regressions are significant at p < 0.0001. The 
MERRA-2 ∆K↓/∆T (value in parentheses) is excluded from the mean value given in 
Supplementary Table 2. 
 

 ∆K↓/∆T  ∆L↓/∆T  

Data source W m-2 K-1 R2  W m-2 K-1 R2 Period 

NOAA-CIRES 
https://psl.noaa.gov/ -2.36 0.27 

 
6.28 0.92 

1851-
2014 

NCEP-NCAR 
https://psl.noaa.gov/ -3.43 0.63 

 
8.53 0.96 

1948-
2019 

JRA-55 
https://rda.ucar.edu/ -3.55 0.63 

 
6.17 0.95 

1958-
2013 

ERA-5 
https://cds.climate.copernicus.eu/ -2.41 0.52 

 
5.54 0.95 

1980-
2019 

MERRA-2 
https://esgf-node.llnl.gov/search/create-ip/ (-9.16) 0.52 

 
8.90 0.89 

1980-
2019 

 
  

https://ceres.larc.nasa.gov/data/
https://psl.noaa.gov/
https://psl.noaa.gov/
https://rda.ucar.edu/
https://cds.climate.copernicus.eu/
https://esgf-node.llnl.gov/search/create-ip/


Supplementary Table 4. List of CMIP5 and CMIP6 climate model simulations 
used in this study. The CMIP5 simulation periods for historical, future (RCP2.6, 
RCP 4.5, RCP6.0 and RCP8.5) and 4×CO2 scenarios are 1850 - 2005, 2006 - 2100 
and 1850 - 1999, respectively. For CMIP6 ssp5-8.5, the simulation period is 2015-
2100. Symbol T denotes availability of tree fraction data. Model CMCC-CMS does 
not output evaporation data and is not used in Fig. 1. BNU-ESM historical experiment 
is not used for tree fraction analysis presented in Supplementary Fig. 2 because it 
shows an unrealistically large tree fraction increase in the historical period. Model 
GISS-E2-R RCP2.6 has an unusually high global precipitation temperature sensitivity. 
Unless stated otherwise, GISS-E2-R RCP2.6 is excluded from the analysis.  
 

 Model name Historical RCP2.6 RCP4.5 RCP6.0 RCP8.5 4×CO2 ssp585 
CMIP5 

 

ACCESS1.0 Y N Y N Y Y  
ACCESS1.3 Y N Y N Y Y  

BCC-CSM1.1 Y Y Y Y Y Y  
BCC-CSM1.1m Y Y Y Y Y Y  

BNU-ESM Y, T Y, T Y, T N Y, T Y, T  
CCSM4 Y Y Y Y Y Y  

CESM1(CAM5) Y Y Y Y Y N  
CMCC-CESM Y, T N N N Y, T N  

CMCC-CM Y N Y N Y N  
CMCC-CMS Y N Y N Y N  
CNRM-CM5 Y Y Y N Y Y  

CSIRO-Mk-3-6-0 Y Y Y Y Y Y  
CanESM2 Y Y Y N Y Y  

FGOALS-g2 Y Y Y N Y Y  
GFDL-CM3 Y, T Y, T Y, T Y, T Y, T Y, T  

GFDL-ESM2G Y, T Y, T Y, T Y, T Y, T Y, T  
GFDL-ESM2M Y, T Y, T Y, T Y, T Y, T Y, T  

GISS-E2-H Y Y Y Y Y Y  
GISS-E2-H-CC Y N Y N Y N  

GISS-E2-R Y Y Y Y Y Y  
GISS-E2-R-CC Y N Y N Y N  
HadGEM2-CC Y, T N Y, T N Y, T N  
HadGEM2-ES Y Y, T Y, T Y, T Y, T Y, T  

INM-CM4 Y, T N Y, T N Y, T N  
IPSL-CM5A-LR Y, T Y, T Y, T Y, T Y, T Y, T  
IPSL-CM5A-MR Y, T Y, T Y, T Y, T Y, T Y, T  
IPSL-CM5B-LR Y, T NT Y, T N Y, T Y, T  

MIROC-ESM Y, T Y, T Y, T Y, T Y, T Y, T  
MIROC-ESM-

CHEM 
Y, T Y, T Y, T Y, T Y, T NT  

MIROC5 Y, T Y, T Y, T Y, T Y, T N  



MPI-ESM-LR Y, T Y, T Y, T N Y, T Y, T  
MPI-ESM-MR Y, T Y, T Y, T N Y, T Y, T  
MPI-ESM-P Y, T N N N N Y, T  

MRI-CGCM3 Y Y Y Y Y Y  
MRI-ESM1 Y N N N Y N  

NorESM1-M Y Y Y Y Y Y  
NorESM1-ME Y Y Y Y Y N  

CMIP6 

 

AWI-CM-1-1-MR       Y 
BCC-CSM2-MR       Y 
CAMS-CSM1-0       Y 

CanESM5       Y 
CESM2       Y 

CESM2-WACCM       Y 
EC-Earth3       Y 

EC-Earth3-Veg       Y 
FGOALS-f3-L       Y 
FGOALS-g3       Y 
GFDL-ESM4       Y 
INM-CM4-8       Y 
INM-CM5-0       Y 

IPSL-CM6A-LR       Y 
MIROC6       Y 

MPI-ESM1-2-HR       Y 
MRI-ESM2-0       Y 

NESM3       Y 
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