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Figure S1. Effects of storage time on the dissolved methane concentration using water samples collected at BFG (a) and MLW (b). Each treatment was replicated three times. Error bars are one standard deviation. CTRL: measurement was made without delay. NS: difference from CNTRL is not statistically significant.
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Figure S2. Effects of headspace fraction on the dissolved methane concentration using water samples collected at a local pond (a) and at MLW (b). Each treatment was replicated three times. Error bars are one standard deviation. 
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Figure S3. A diel composite of pH observed at the 20-cm depth at a buoy site in Gonghu Bay (location labeled as SSC in the map inset). Observations were made over 155 days in the summer of 2009 and in the winter of 2009-2010 (Hu et al., 2015). 
[image: ] 

Figure S4. Temporal variation of the surface dissolved CH4 at the five lake observation sites (MLW, BFG, DPK, XLS, and PTS) where frequent water sampling took place. Their locations are shown in Figure 1. Red circles indicate the whole-lake mean dissolved CH4 concentration. The error bar is ±1 standard deviation. 
[image: D:\Php study\Lake Taihu CH4_update\Revised_20161128\Tw_Wind speed_Dissolved CH4\CH4 concentration.tif]


Figure S5. Temporal variation of wind speed at the five lake observation sites (MLW, BFG, DPK, XLS, and PTS) where frequent water sampling took place. Their locations are shown in Figure 1. 
[image: I:\Phd study\Lake Taihu CH4_update\Revised_20161128\Tw_Wind speed_Dissolved CH4\Wind speed.tif]

Figure S6. Diel variation of the diffusion CH4 flux at MLW. The gas transfer coefficient was determined with the model described by Cole et al. (1998, a), and with a model that considers both wind speed and waterside convection (Podgrajsek et al., 2015, b). Error bars are ± 1 standard error.  
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Table S1. Annual mean total phosphorous (TP) and total nitrogen (TN) of the seven zones in Lake Taihu in 2014. 
	Zones
	Area (km2)
	TP (mg L-1)
	TN ( mg L-1)
	Trophic class1

	Meiliang Bay
	100
	0.087
	2.18
	Eutrophic

	Gonghu Bay
	215.6
	0.065
	1.81
	Mesotrophic

	East Zone
	316.4
	0.033
	1.23
	Mesotrophic

	Dongtaihu Bay
	131
	0.037
	0.90
	[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Mesotrophic

	Southwest Zone
	443.2
	0.067
	2.01
	Mesotrophic

	Northwest Zone
	394.1
	0.094
	2.58
	Hyper-eutrophic

	Central Zone
	737.5
	0.072
	1.89
	Mesotrophic

	Whole lake
	2338
	0.069
	1.90
	Eutrophic


Data source: The Health Status Report of Taihu Lake, Taihu Basin Authority of Ministry of Water Resources and Electric Power, http://www.tba.gov.cn/.

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]1: Trophic classifications are defined according to OECD (Organization for Economic Cooperation and Development) (1982), Eutrophication of Waters. Monitoring assessment and control. Final Report. OECD Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control), Environment Directorate, OECD, Paris.


Table S2. Temporal correlation of the diffusion CH4 flux (mmol m-2 d-1) with wind speed (m s-1) and dissolved CH4 concentration (nmol L-1) at five locations (MLW, BFG, DPK, XLS, and PTS).

	Site
	CH4 concentration
	Wind speed

	MLW
	y = 0.0011x – 0.0193
R = 0.92  p < 0.001  n = 1261
	y = 0.0934x – 0.1852
R = 0.09  p < 0.001  n = 1264

	BFG
	y = 0.0015x – 0.0468
R = 0.84  p < 0.001  n = 24
	y = 0.0514x – 0.0601
R = 0.21  p = 0.315  n = 24

	DPK
	y = 0.0010x – 0.0032
R = 0.93  p < 0.001  n = 15
	y = -0.0255x +0.1470
R = -0.21  p = 0.458  n = 15

	XLS
	y = 0.0016x – 0.0164
R = 0.97  p < 0.001  n = 15
	y = 0.0276x – 0.0688
R = 0.33  p = 0.223  n = 15

	PTS
	y = 0.0010x – 0.0028
R = 0.94  p < 0.001  n = 15
	y = 0.0114x – 0.0232
R = 0.13  p = 0.654  n = 15





[bookmark: OLE_LINK82][bookmark: OLE_LINK83]Table S3. Pearson correlation between these explanatory environmental variables measured at the 29 spatial sampling sites. DO, dissolved oxygen concentration; Chl-a, chlorophyll a concentration; Spc, specific conduce; ORP, oxidation reduction potential; NTU, turbidity; Depth, water depth; Clarity, water clarity.

	
	NDVI
	DO
	pH
	Chl-a
	NTU
	Depth
	Spc
	ORP

	NDVI
	
	
	
	
	
	
	
	

	DO
	-0.02
	
	
	
	
	
	
	

	pH
	-0.34*
	0.72**
	
	
	
	
	
	

	Chl-a
	0.31
	0.70**
	0.48**
	
	
	
	
	

	NTU
	-0.61**
	0.07
	0.27
	0.23
	
	
	
	

	Depth
	0.01
	0.25
	0.43*
	0.04
	0.11
	
	
	

	Spc
	0.291
	-0.49**
	-0.57**
	0.43*
	-0.35*
	0.09
	
	

	ORP
	-0.01
	-0.18
	-0.08
	0.05
	-0.20
	-0.04
	0.08
	

	Clarity
	0.58**
	0.12
	-0.11
	0.54**
	-0.61
	-0.23
	-0.10
	0.01


*, ** Correlation is significant at the 0.05, and 0.01 level, respectively. 


Table S4. Summary of the general multiple regressions: variance inflation factor (VIF), R2, significance levels of the predictor variables (p), and the Akaike information criterion (AIC). 

	Model
	Explanatory variables
	VIF
	R2
	p
	AIC

	1
	NDVI
	
	0.27
	0.004
	-148.29

	2
	NDVI
	1.51
	0.40
	0.001
	-151.98

	
	Water clarity
	1.51
	
	
	

	3
	NDVI
	1.52
	0.63
	<0.001
	-164.19

	
	Water clarity
	1.55
	
	
	

	
	Dissolved oxygen
	1.03
	
	
	

	4
	NDVI
	1.60
	0.78
	<0.001
	-176.46

	
	Water clarity
	1.75
	
	
	

	
	Dissolved oxygen
	1.14
	
	
	

	
	Water depth
	1.21
	
	
	




Comparison of the diffusion flux calculated with four different models for the gas transfer coefficient
In this supplementary section, we present a comparison of the diffusion flux calculated using four different models for the gas transfer coefficient. The four models are described by Cole et al. (1998, k1), Read et al. (2012, k2), Heiskanen et al. (2014, k3), and Podgrajsek et al. (2015, k4).

The first model is that of Cole et al. (1998). In this model, the gas transfer coefficient k1 is wind-dependent and is normalized to a Schmidt number 600 of a gas at temperature of 20 oC, 
k1 = k600 × (Sc/600)-n                                      (S1)
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]where Sc is Schmidt number for CH4 at in-situ temperature. For the exponent n, we used the value 2/3 at low wind speed (U10 < 3.7 m s-1) according to Huotari et al. (2009) and the value of 1/2 at high wind speed (U10 > 3.7 m s-1) according to MacIntyre et al. (1995) and Juutinen et al. (2009). An empirical relationship was used to determine k600 (cm h-1; Cole and Caraco, 1998): 
k600 = 2.07 + 0.215                        (S2)
where U10 is wind speed at the 10-m height (m s-1). The required input is U10, which was measured by a wind sensor at PTS in the lake.

The second model is a surface renewal scheme described Read et al. (2012). It considers both wind shear (εu) and waterside convection (εw), 
[bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK1]k2 = η(εν)0.25Sc-n                                            (S3)
[bookmark: OLE_LINK24][bookmark: OLE_LINK25]where η is a proportionality constant, ν is the kinematic viscosity of water, n is a coefficient representing surface conditions, and
ε = εu + εw                                 (S4)
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK15][bookmark: OLE_LINK16]is the turbulent kinetic energy dissipation rate representing the total contribution from wind shear (εu) and waterside convection (εw). The wind shear contribution is given by
[bookmark: OLE_LINK2][bookmark: OLE_LINK11]εu = (τt/ρw)/(Κδv)                          (S5)
[bookmark: OLE_LINK28][bookmark: OLE_LINK29]where τt is the tangential shear stress in air, ρw is the density of water, K is the von Karman constant, and δv is the thickness of the viscous sublayer given by Soloviev et al. (2007),
δv = c1ν/(τt /ρw)0.5                                        (S6)
where c1 is a dimensionless constant.
The contribution by waterside convection (εw) is given as, 
εw = -β                                 (S7)
where β is buoyancy flux defined as 
β =                                 (S8)
where g is the acceleration of gravity, a is the thermal expansion coefficient of water, Cp is the specific heat of water, Qe is the effective surface heat flux (Imberger, 1985; Jeffery et al., 2007). If the lake is gaining heat from the atmosphere (Qe > 0), εw is set to zero. 

We used the air friction velocity measured at PTS to determine τt in Equation S5 and S6, and approximate the surface heat flux Qe as the residual of the surface energy balance equation,
[bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK14][bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK21]Qe = Rn – H – λE                    (S9)   
where Rn (net radiation), H (sensible heat flux), and λE (latent heat flux) were measured at PTS. Other coefficients are given by Read et al. (2012) as η= 0.29, n = 0.5, and Sc = 600.

The third model, described by MacIntyre et al. (2010) and Heiskanen et al. (2014), is also a surface renewal parameterization. It uses different fitting coefficients from Read et al. (2012) to calculate the gas transfer coefficient, 
k3 = 0.5(εν)0.25Sc-n                                    (S10)
ε = 0.77 (-β) + 0.3 ()3/(Kz)                      (S11)
where β is buoyancy flux defined by Equation S8, z is a mixed layer depth,  is the velocity scale for wind shear given by
 =                                  (S12)
where ρa is the density of air,  is the air friction velocity measured at PTS in the lake, 
Sc is the Schmidt number for CH4 at in-situ temperature, n = 0.5, and the mixing layer depth z was set to 0.5 m according to the thermal diffusivity profile calculated with the model of Herb and Stephan (2005) for Lake Taihu. 

The fourth model is that of Podgrajsek et al. (2015) which also considers the effect of waterside convection. The gas transfer coefficient k4 is given as  
k4 = k1 + 0.05 × exp(1068 × (β z)1/3)                                (S13)
where k1is determined by Equation S1, β is defined by Equation S8, and z is the mixed layer depth. In this equation, the second term represents the contribution of waterside convection to the gas transfer. 

We estimated the percentage of the gas transfer (kw) driven by waterside convection from the last three models. In the case of the second model, kw was computed from Equation S3 by setting εu to zero. In the third and the fourth model, kw was computed from Equation S10 and S13 by setting  and k1 to zero, respectively. The percent of the contribution of waterside convection is 
kw%= (kw/k)100%                                    (S14)
where k is the total gas transfer coefficient driven by wind shear and waterside 
convection.

Figure S7 compares the annual mean diffusion flux from the four models. The annual mean CH4 diffusion fluxes based on the four different diffusivity formulations were 0.092 (Cole et al., 1998), 0.103 (Read et al., 2012), 0.080 (Heiskanen et al., 2014), and 0.093 mmol m-2 d-1 (Podgrajsek et al., 2015).

Figure S7. Comparison of the whole-lake diffusion CH4 flux calculated with four different models of the gas transfer coefficient. Error bars are one standard deviation of the12 annual mean values for the 29 lake survey locations (Figure 1).   
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