

T					
2	Atmospheric Chemistry & Physics				
3	Supporting Information for				
4	A wedge strategy for mitigation of urban warming in future climate scenarios				
5	Lei Zhao ^{1,2,3} , Xuhui Lee ^{2,3} , Natalie Schultz ³				
6	1: Program in Science, Technology and Environmental Policy (STEP), Woodrow Wilson School of Public and				
7	International Affairs, Princeton University, Princeton, New Jersey, USA				
8	2: Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology				
9	Nanjing, China				
10	3: School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA				
11	Correspondence to: lei.zhao@princeton.edu				
12					
13					
14 15 16 17 18 19 20	Contents of this file Figures S1 to S2 Tables S1 Additional Supporting Information (Files uploaded separately) Captions for Movies S1 to S2				

Supplementary Figure S1: UHI mitigation wedges for daytime using cool roofs, street vegetation, green roofs and reflective pavement for the cities in the temperate and dry climate zones under the RCP4.5 scenario (a, b, c, d: temperate climate; e, f, g, h: dry climate). The horizontal line marks the midday rural surface temperature under the current climate conditions, and all other temperatures are midday mean values relative to this rural background.

Supplementary Figure S2: Distribution of the vertical temperature difference (surface temperature minus air temperature at the first model grid height) for all the selected cities. a, b, c: daytime; d, e, f: nighttime. a, d: current climate (1972-2004); b, e: RCP 4.5 (2071-2100); c, f: RCP 8.5 (2071-2100); urb_CTR and urb_WHT denote urban land unit from control and cool-roof simulations, respectively.

Supplementary Table S1: Changes in the daytime urban surface temperature (K) associated with various urban

mitigation methods under the current climate and the two RCP scenarios. Data are mean value ± 1 standard error.

Current							
Method	Process	Dry	Continental	Temperate	All		
Cool roof	albedo	-6.8 ± 0.5	-3.9 ± 0.4	-6.4 ± 0.3	-5.6 ± 0.3		
Street vegetation	net effect	-0.1 ± 0.1	-0.5 ± 0.1	-1.2 ± 0.1	-0.7 ± 0.1		
	albedo	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.0	0.1 ± 0.0		
Green roof	convection	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		
Green 1001	evaporation	-0.6 ± 0.1	-0.6 ± 0.1	-1.1 ± 0.2	-0.8 ± 0.1		
	net effect	-0.6 ± 0.1	-0.6 ± 0.1	-0.9 ± 0.2	-0.7 ± 0.1		
Reflective pavement	albedo	-1.0 ± 0.0	-0.5 ± 0.0	-0.6 ± 0.0	-0.7 ± 0.0		
RCP 4.5							
Method	Process	Dry	Continental	Temperate	All		
Cool roof	albedo	-7.3 ± 0.6	-5.1 ± 0.4	-7.3 ± 0.3	-6.5 ± 0.3		
Street vegetation	net effects	-0.3 ± 0.1	-0.7 ± 0.1	-1.3 ± 0.2	-0.9 ± 0.1		
	albedo	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.0		
Green roof	convection	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		
Green 1001	evaporation	-1.0 ± 0.2	-1.2 ± 0.1	-2.3 ± 0.4	-1.6 ± 0.2		
	net effect	-1.0 ± 0.2	-1.2 ± 0.1	-2.2 ± 0.4	-1.6 ± 0.2		
Reflective pavement	albedo	-0.9 ± 0.0	-0.6 ± 0.0	-0.6 ± 0.0	-0.7 ± 0.0		
RCP 8.5							
Method	Process	Dry	Continental	Temperate	All		
Cool roof	albedo	-7.4 ± 0.6	-5.0 ± 0.4	-6.8 ± 0.3	-6.3 ± 0.3		
Street vegetation	net effect	-0.3 ± 0.1	-0.6 ± 0.1	-1.1 ± 0.1	-0.7 ± 0.1		
	albedo	0.0 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.0 ± 0.0		
Green roof	convection	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		
GICCH 1001	evaporation	-1.1 ± 0.3	-1.3 ± 0.1	-2.1 ± 0.3	-1.6 ± 0.2		
	net effect	-1.1 ± 0.3	-1.3 ± 0.1	-2.0 ± 0.3	-1.6 ± 0.2		
Reflective pavement	albedo	-0.9 ± 0.1	-0.5 ± 0.0	-0.5 ± 0.0	-0.6 ± 0.0		

46	
47	List of Movie Captions:
48	
49	Movie S1 An urban neighborhood in Switzerland with roof pixels retaining their natural reflectance values
50	
51	Movie S2 Same with Movie S1 but with roof pixels replaced by saturation reflectance values to simulate the
52	SOLAREFLECT coating material
53	
54	