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Abstract Even though knowing the contributions of transpiration (T), soil and open water evaporation
(E), and interception (I) to terrestrial evapotranspiration (ET = T+ E+ I) is crucial for understanding the
hydrological cycle and its connection to ecological processes, the fraction of T is unattainable by traditional
measurement techniques over large scales. Previously reported global mean T/(E+ T+ I) from multiple
independent sources, including satellite-based estimations, reanalysis, land surface models, and isotopic
measurements, varies substantially from 24% to 90%. Here we develop a new ET partitioning algorithm,
which combines global evapotranspiration estimates and relationships between leaf area index (LAI) and
T/(E+ T) for different vegetation types, to upscale a wide range of published site-scale measurements. We
show that transpiration accounts for about 57.2% (with standard deviation ± 6.8%) of global terrestrial ET.
Our approach bridges the scale gap between site measurements and global model simulations,and can be
simply implemented into current global climate models to improve biological CO2 flux simulations.

1. Introduction

Terrestrial evapotranspiration (ET) consists of evaporation from canopy-intercepted water (I), soil and open
water evaporation (E), and transpiration (T) from plants. The contribution of T to ET (T/(E+ T+ I)) is a require-
ment for understanding changes in carbon assimilation and in water cycling in a changing environment and
has received increasing attention from the scientific community in recent years [Coenders-Gerrits et al., 2014;
Good et al., 2015; Jasechko et al., 2013; Maxwell and Condon, 2016; Miralles et al., 2016]. Although most of the
published studies suggest that T accounts for the majority of the flux of vapor from terrestrial lands to the
atmosphere, there remain significant uncertainties. As an example, Miralles et al. [2011] attributed about
80% of land ET to T based on a wide range of remotely sensed observations, while Jasechko et al. [2013]
reported that T represents 80–90% of terrestrial ET based on the isotopic analysis of a global data set of large
lakes and rivers. More recently, Good et al. [2015] estimated that the mean transpired fraction of ET is 64%
based on satellite water vapor isotopic measurements and isotope mass budget. A model-based partitioning
approach based on lateral ground flow also suggested that the T amounted to two thirds ET globally [Maxwell
and Condon, 2016]. On the other hand, studies based on land surface models have suggested that the
fraction of transpiration is much smaller, ranging around a mean value of about 43% [Dirmeyer et al.,
2006; Lawrence et al., 2007, 2011;Wang-Erlandsson et al., 2014; Yoshimura et al., 2006], and some results based
on satellite data yielded transpiration fractions as low as 24%. Finally, in the Coupled Model Intercomparison
Project 5 (CMIP5), the fraction of T varies from 22% to 58%, with an ensemble mean of 43% (supporting
information Figure S1). These uncertainties mostly arise from methodological assumptions that cannot be
directly contrasted against field observations. While some studies have compared in situ site measurements
with global model simulation results [Schlesinger and Jasechko, 2014; Wang et al., 2014], the limited
spatial scale of in situ studies—on the order of a few plants to several hectares—hampers the ability to
upscale results to global mean values. The wide range of T/(E+ T+ I) values in previous studies reflects how
poorly we understand ET partitioning, with the corresponding implications for the terrestrial water and
carbon cycles.
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The relative contribution of transpiration to evapotranspiration has been found to be dependent on soil
moisture availability [Denmead and Shaw, 1962; Shuttleworth and Wallace, 1985], climatic factors such as
vapor pressure deficit [Granier et al., 1996], and turbulent characteristics [Tuzet et al., 1997]. Recently, the frac-
tion of T has been directly linked to vegetation morphological attributes [Wang et al., 2014; Zhou et al., 2016],
in particular, leaf area index (LAI,Wang et al. [2014]). Transpiration is directly related to canopy conductance,
which is positively related to LAI; therefore, it is not surprising that LAI can act as a control over ET partitioning
[Good et al., 2014; Schlesinger and Jasechko, 2014;Wang et al., 2014]. The advantage of exploiting the relation-
ship between T/(E+ T+ I) and LAI is that results can be easily extended to the global scales, since LAI data are
available from polar satellites. However, the ratio T/(E+ T+ I) varies greatly among ecosystem types because
of interactions among plant morphology, environmental conditions, and stomatal regulation [Raz-Yaseef
et al., 2012]. Within an ecosystem, variations in weather conditions, growth stage, and soil moisture can result
in large temporal variability in T/(E+ T+ I). Moreover, the T/(E+ T+ I) versus LAI relationship is robust only if
the intercepted water is a small fraction of the total ET, given the parallel dependence of I on LAI. In other
words, LAI is a good predictor for T/(E+ T) only; thus, to derive T/(E+ T+ I) (i.e., T/ET), the magnitude of I
needs to be known. Current understanding of the interception process suggests that I depends mainly
on rainfall amount and intensity, aerodynamic conductance, canopy morphology, and LAI [Miralles et al.,
2010; van Dijk et al., 2015]. Even though current interception estimates at global scales remain uncertain,
several data sets of I, which are based on satellite observations, have been developed in recent years
[Miralles et al., 2016].

In summary, quantitative ET partitioning at the global scale is somewhat poor and not directly linked to
the insights gained from site measurements. An improved estimate of the ET partitioning at the global scale
and its geographic distributions should reduce uncertainties in modeling of the atmosphere-land water
exchange, improve our ability to predict river runoffs, and help to inform management of water resources.
Here, to quantify the fraction of T at the global scale, we develop a new ET partitioning algorithm that uses
ecosystem-specific LAI regressions. We first develop regression equations between T/(E+ T) and LAI for six
ecotypes to upscale site measurements from 64 previous studies and estimate T/(E+ T),and then apply
ET and I estimate from remote sensing and land surface models to derive global T/(E+ T+ I) ratios. Our
results show that transpiration accounts for about 57.2% (uncertainty range of 42.9–74.9%) of the global
terrestrial evapotranspiration.

2. Methods

We develop a new ET partitioning approach based on the estimated ET, I, fraction of each land cover class Fvi
(varying in the range of 0–1, where i is vegetation class), and LAI regression. The total transpiration T in each
grid is calculated as

T ¼
Xn

i¼1

E þ Tð Þ � Fvi � aLAIb (1)

where a and b are two regression coefficients specific to land cover class i. There are a total of six vegetation
classes in this calculation.

We establish the relationship between LAI and T/(E+ T) for each vegetation class using data found in the
literature, as T/(E+ T) = aLAIb. The following screening criteria are used when selecting data from the
published literature: (1) the ratio T/(E+ T) is reported either from direct site-based measurement of the com-
ponent fluxes (E and T) or from isotopic tracer methods; (2) LAI is quantified during the measurement period;
and (3) vegetation types are reported.

A total of 64 individual ground studies published before 30 September 2016 are included in our analysis.
These studies are based on a range of measuring techniques, such as combination of eddy covariance sys-
tems, Bowen ratio systems, weighing lysimeters, sap flowmeters, leaf conductance upscaling, chamber mea-
surements, and isotopic measurements. The E, T, E+ T (or ET-I), and LAI values recorded directly in the tables
or text in these original papers are summarized in supporting information Table S1. The observations are
divided into six vegetation classes, including four upland natural vegetation classes [broad-leaf forests,
needle-leaf forests, mixed forests (a combination of broad-leaf and needle-leaf trees), and shrubs-grasses],
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a wetland class, and a cropland class. The grouping of upland natural ecosystems is based on permanence of
aboveground biomass, canopy phenology, and leaf type, which are the key factors in determining stomatal
conductance. Wetlands and crops are treated separately from the other vegetation classes due to their differ-
ent root-zone water and nutrient availability. Tundra ecosystems are included in the shrub-grass class
because of lack of field observations to constrain the E/ET versus LAI relationship as an independent tundra
class. To reduce random error, the data obtained in cropland class are averaged into 0.5-LAI bins because this
class is a mixture of different species, such as corn, wheat, rice, cowpeas, grapes, lupin, coffee, and sunflower.
For the other five vegetation classes, the number of data samples is too small to perform bin averaging. A
regression procedure is applied to equation (1) against a subset of the data for each class to find the best-
fit coefficients a and b for that class.

There is no consensus as to which global ET product is most accurate [Miralles et al., 2016; McCabe et al., 2016].
Although some simulations have produced similar results, they are not always based on independent sources
and therefore may share common biases related to the use of a common calibration or forcing data set and to
common model assumptions [Mueller et al., 2013]. To avoid these problems, three independent ET products
are used. (1) ET estimated by the Community Land Model 4.5 SP (CLM, Oleson et al. [2013]): This is a physically
basedmodel at a 1° resolution. Themodel divides a grid cell into dry foliage, wet foliage (due to interception),
and exposed soil. The dry foliage is further divided into sunlit and shaded portions. Computation of water
vapor flux is made for each of these pathways. (2) Remote sensing-based ET product called GLEAM (Global
Land Surface Evaporation: The Amsterdam Model, see Miralles et al. [2011] and Martens et al. [2016]).
GLEAM is designed to maximize the use of satellite-based observations to create a spatially coherent estimate
of the evaporative flux ET over land at daily and 0.25° resolutions. The method relies on a Priestley and Taylor
approach to derive daily potential evaporation estimates from observed surface net radiation and surface air
temperature, which are then constrained based on of soil moisture and vegetation water content observa-
tions. The potential evaporation is adjusted downward on the basis of soil moisture and phenology observa-
tions to obtain the actual ET. (3) ET estimated from Penman-Monteith-Leuning (PML) model [Zhang et al.,
2016]: PML is a simple biophysical model based on remote sensing LAI and separate versions of the
Penman-Monteith equation for soil evaporation and plant transpiration. In PML, monthly ET estimates come
from the aggregation of their individual components at each 0.5° grid cell. Generally, global patterns of
annual mean ET estimated from these three products reveal a high correspondence (supporting information
Figure S2).

Likewise, three different I products are adopted in this study. The first I product comes from the CLM and is
derived through a simple model based on the observed precipitation, LAI, and stem area index (SAI). The sec-
ond I product is obtained from GLEAM, which uses Gash’s analytical model based on observed precipitation
and vegetation fractional cover [Miralles et al., 2010]. The third I product comes from PML and is also calcu-
lated from a modified version of Gash’s rainfall interception model. Different from ET products, a significantly
higher global mean I/(E+ T+ I) value of 20% is found for CLM, compared to 11% and 10% of GLEAM and PML,
respectively (supporting information Figure S3).

Finally, we use LAI data derived from four remotely sensed data sets: GIMMS3g [Guay et al., 2015], Improved
LAI [Yuan et al., 2011], GLASS [Xiao et al., 2014], and GLOMAPLAI. The 1° resolution International Geosphere
Biosphere Program (IGBP) land cover data set [Friedl et al., 2010], which is based on the Land Cover Type
Climate Modeling Grid (MCD12C1) created by Terra and Aqua Moderate Resolution Imaging
Spectroradiometer observations made in 2001, is also used to classify past in situ studies and derive the a
and b parameters (see equation (1)) for the fraction of each land cover class (Fv) per pixel. The 17 IGBP land
cover classes are reclassified into six land cover classes, to match the global synthesis of the LAI control on
the ET partitioning analysis (supporting information Table S2).

All data products are regridded and averaged into a 1° resolution and monthly timescale. In each grid, T is
calculated by equation (1) in monthly timescale from 1982 to 2014 (if data are available). There are a total
of 36 combinations of LAI, ET, and I products, corresponding to 36 permutations of T. Combining these per-
mutations with the three ET products yield a total of 108 ensemble members for T/(E+ T+ I) (see flow diagram
in supporting information Figure S4). The monthly T and ET are then averaged into annual mean to calculate
annual T/(E+ T+ I). The area and ET weighted ensemble mean ratios of global T/(E+ T+ I) are computed
from the 108 ensemble members and are averaged over annual time steps. Our upscaling methodology
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omits variations caused by daily to seasonal variations in soil moisture, groundwater availability, and vapor
pressure deficit but considers interannual climate variability implicitly because the ET and LAI products
vary interannually.

3. Results

The site-level data indicate that LAI is a good predictor of T/(E+ T) (Figure 1). Overall, the strong correlation
between LAI and T/(E+ T) obtained from the different data sets suggests that LAI can be considered the
first-order factor affecting ET partitioning. The variability of T/(E+ T) can result from biotic and abiotic
responses to weather and soil moisture dynamics at daily to weekly scales. However, at the seasonal
timescale, such variability becomes small, and the ratio converges toward a stable mean state, which is set
by LAI [Berkelhammer et al., 2016]. The T/(E+ T) curves bear remarkable resemblance to the seasonal pattern
predicted by a two-source ET modeling [Hu et al., 2008; Shuttleworth and Wallace, 1985].

Figure 1. Ecosystem relationships between LAI and T/(E + T). Black points are obtained from previous studies. Red open
diamonds with error bars in crops class are 0.5-bin LAI averaged of black points and the standard deviation. Solid line is
a regression of the individual data points (except for the crop class, which is estimated from the bin averages). N is the
number of studies, and n is available data points in each class. Dash lines are 95% confidence bounds.
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The LAI regression varies substantially among the different vegetation classes (Figure 1 and supporting
information Table S3). For shrubs and grasses, T/(E+ T) can be high even under low LAI conditions (e.g.,
T/(E+ T) = 0.69 at LAI= 1, based on the regression equation), and at larger values of LAI, it dramatically
increases (e.g., T/(E+ T) = 0.93 for LAI=3). This agrees with the results from catchment and site-scale isotopic
analyses of vegetated areas dominating by sparse grass vegetation in the western United States, showing

that T/(E+ T) is higher than 70%
[Schlesinger and Jasechko, 2014].
Likewise, crops may also have high
T/(E+ T) under low LAI conditions
(T/(E+ T) = 0.66, LAI= 1), potentially
influenced by a high water use effi-
ciency and the fact that agricultural
plants are typically less constrained
by environmental stresses [Wang
et al., 2014]. On the other hand,
forests tend to have lower T/(E+ T)
ratios at low LAI values (e.g.,
T/(E+ T) = 0.48 for needle-leaf for-
ests and T/(E+ T) = 0.64 for broad-
leaf forests, both for LAI=1). This
is arguably due to the shading
effect of grasses and shrubs caus-
ing lower fractions of exposed bare
soil and lower stomatal conduc-
tance of trees [Hetherington and
Woodward, 2003; Teuling et al.,
2010; Wang et al., 2013].

The globally averaged T/(E+ T+ I)
ratio is 57.2% (with standard
deviation ± 6.8%) based on a total
of 108 different data source per-
mutations or ensemble members.
No significant trend in T/(E+ T+ I)
is detected from 1982 to 2014

Figure 2. The ensemble means of T/(E + T + I) ratio using different data sources for ET, I, and LAI, with a total of 108 different
data source permutations.

Figure 3. The zonally averaged ensemble means T/(E + T + I) and T/(E + T).
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(supporting information Figure S5), although a slight increase (0.068 ± 0.045m2m�2 yr�1) of LAI over 25% to
50% of the global vegetated area was reported [Zhu et al., 2016]. For comparison, the CMIP5modeling results
and remote sensing ET products reveal no significant trend in T/(E+ T+ I) (supporting information Figure S6
and Figure S7). The 30 year mean of global T/(E+ T+ I) varies from 42.9% to 74.9% among ensemblemembers
(supporting information Table S4 and Figure S5). The fraction of T uncertainty is small among the three
adopted ET products (T/(E+ T+ I) is 55.1 ± 6.7%, 55.2 ± 6.8%, 61.3 ± 6.8% if ET is derived from GLEAM, CLM,
and PML, respectively). One of the main uncertainties stems from variations among the interception data
products: T/(E+ T+ I) is 52.2 ± 7.0% if I is derived from CLM and increases to 60.0 ± 6.7% and 59.2 ± 6.8% if I
is derived from GLEAM and PML, respectively. Another uncertainty is related to the LAI data sets. T/(E+ T+ I)
is 63.0 ± 6.9% if LAI is derived from GIMMS3g and decreases to 57.3 ± 7.0%, 55.9 ± 6.4%, and 52.0 ± 6.8% if
LAI is derived from GLASS, Improved LAI, and GLOMAPLAI, respectively.

Figure 2 shows the global distribution of the ensemble means of T/(E+ T+ I). Except for deserts and glaciers, T
is the dominant component of the annual ET. The highest T/(E+ T+ I) is found in central Africa covered by
grass and shrub. On the other hand, the highest T/(E+ T) is found in the Amazon rainforests, because of large
LAI (responsible for both T and I) in this region (supporting information Figure S8). The zonally averaged
T/(E+ T+ I) varies from 1% to 61%, and T/(E+ T) varies from 1% to 75%, exhibiting distinct latitudinal patterns,
changing as a function of vegetation density and decreasing toward the poles (Figure 3). Low T/(E+ T+ I)
and T/(E+ T) ratios are found near the poles (latitudes north of 60oN and south of 40oS). Between 10°N and
20°S, T/(E+ T+ I) fluctuates around 55% while T/(E+ T) around 68%. T/(E+ T) is much higher than T/(E+ T+ I)
in this zone than in midlatitudes because a larger fraction of ET is contributed by evaporation of intercepted
water.

Table 1. Comparison of T/(E + T + I) (%) for Several Vegetation Types Among Different Studies

Vegetation Class
Zhou et al.
[2016]

Wang-Erlandsson
et al. [2014]

Miralles et al.
[2011]

Schlesinger and
Jasechko [2014]

This
Study

Crops 62–69 72 92 66
Shrubs and grasses 60 58–70 72–90 47–62 65
Needle leave forests 56 50–52 70 55–65 55
Broad leave forests 52 54–64 79 70 61
Mixed forests 57 55
Wetlands 31–37 31

Figure 4. Comparison of T/(E + T + I) estimated by different methods. Methods include GSWP-2 [Dirmeyer et al., 2006],
CMIP5 (corresponding to the ensemble mean of 21 models in CMIP5, see supporting information Figure S1), STEAM
[Wang-Erlandsson et al., 2014], IsoMatsiro [Yoshimura et al., 2006], CLM3 [Lawrence et al., 2007], CLM3.5, CLM4CN, CLM4CNE,
CLM4SP [Lawrence et al., 2011], lake isotope [Jasechko et al., 2013], lake isotope (revised) [Coenders-Gerrits et al., 2014], global
isotope budget [Good et al., 2015], groundwater-based partitioning [Maxwell and Condon, 2016], GLEAM [Miralles et al.,
2016], PM-MOD [Miralles et al., 2016], PT-JPL[ Miralles et al., 2016], PML [Zhang et al., 2016], site measurements +models
[Schlesinger and Jasechko, 2014], and site measurements [Wang et al., 2014]. The error bar represents the standard deviation
(±6.8%) in this study.
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The estimated annual T/(E+ T+ I), classified by vegetation types, is further compared to the values reported
in previous studies (Table 1). Overall, T is the dominant component in total ET for all vegetation classes, with
the T/(E+ T+ I) ratio ranging from 55% to 66%, except wetlands which have a lower ratio of 33% because of
low LAI. Our estimated annual T/(E+ T+ I) based on vegetation classification is fairly similar to the ET partition-
ing results based on the concept of water use efficiency [Zhou et al., 2016] and land surface model STEAM
[Wang-Erlandsson et al., 2014], but is lower than the values reported by in Jasechko et al. [2013] likely due
in part to the citation of an interception value that is substantially lower than more recent interception esti-
mates used here (see [Schlesinger and Jasechko, 2014]. The crop class has the highest T/(E+ T+ I) among the
ecosystem types considered, in agreement with the high T/(E+ T) from the LAI regressions.

Figure 4 provides a summary of the ET partitioning values reported in the literature and how they compare
with our result. Our global T/(E+ T+ I) estimate ranges from 42.9% to 74.9% among the individual ensemble
members. The ensemble mean ratio of 57.2 ± 6.8% is about 5–10% lower than a recently reported isotopically
based partitioning estimate [Good et al., 2015], from site scales estimates [Schlesinger and Jasechko, 2014;
Wang et al., 2014] and from a model that accounts for groundwater flow [Maxwell and Condon, 2016], but
10% higher than the ensemble mean of the global climate model results posted in the CMIP5 data depository
(supporting information Figure S1).

4. Discussion

In our study, the 17 land cover types in the IGBP are reclassified into six land cover classes, in order to produce
robust regression. This regrouping can introduce uncertainties in the estimated T/(E+ T) (Methods and
supporting information Table S2). For example, crops display large variations in T/(E+ T) under similar LAI
conditions because they are mixtures of different species, such as corn, wheat, rice, cowpeas, grapes, lupin,
coffee, and sunflower (supporting information Table S1), although an acceptable correlation is obtained after
bin averaging with an LAI increment of 0.5. We tried dividing the crops into C3 and C4 groups, but the correla-
tion in the LAI regression did not improve. Perhaps as more site-level data become available in the published
literature, subclassification according to stomatal characteristics may strengthen the regression analysis.
Because shrubs and grasses have different LAI dynamics and different rooting depth, the further subclassifi-
cation may also be required to break this group into two classes.

Two ecosystem classes require further improvement. First, in savanna ecosystems, overstory (trees) and
understory (grass) coexist, and their transpiration contributions to ET should be considered separately, due
to their different water uptake processes. Unfortunately, current land cover and LAI data sets do not make
a distinction between overstory and understory vegetation. This might be a reason for the large discrepancies
of modeled ET and T in savanna regions in previous LSM applications [e.g., Miralles et al., 2016]. Second, in
tundra ecosystems, evaporation from moss and lichens is the main component of ET. However, the scarcity
of field measurements does not allow us to establish the relationship between LAI and T/(E+ T) for this
ecosystem class.

Site-level measurement errors can also introduce uncertainties to the LAI regression. In some studies, tran-
spiration from understory vegetation was not well constrained, with many studies suggesting understory
vegetation contributes 10% to 50% of the total ET and this contribution tends to increase with decreasing
LAI [Kelliher et al., 1997; Wilson et al., 2000]. Thus, the LAI regression may lead to overestimation of sap flow
based on those publications that determined E using lysimeter or chamber methods and ET using eddy cov-
ariance. Both isotopic and nonisotopic measurements are included in our LAI regression estimation. Most
isotope-based studies have shown that T generally contributes more than 70% to the ET, while nonisotopic
measurements generally lead to smaller T fractions [Schlesinger and Jasechko, 2014; Sutanto et al., 2014].
Several possible explanations for this discrepancy have been offered [Schlesinger and Jasechko, 2014;
Sutanto et al., 2014], although some comparative studies found no systematic difference between isotope
and nonisotope methods [Wang et al., 2015; Wen et al., 2016].

It is possible that the discrepancy between stand-scale-isotope and nonisotope approaches may result from a
mismatch at the temporal scale. The stand-scale isotope-based method is robust under conditions of high
water vapor flux. Under weak turbulence conditions (e.g., in the morning or evening) when water vapor flux
is small, the uncertainties with isotopic estimations are quite large [Wei et al., 2015]. Thus, the isotope method
is usually restricted to estimating T/ET for the midday hours of high T [Wang et al., 2013]. On the other hand,
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nonisotope methods are used in all time periods, including nighttime when T is weak but E still occurs. Thus,
the isotopic measurements included in the LAI regression estimation may result in an overestimation of the
fraction of T.

To explore the uncertainties resulting from the LAI regression procedure, we conducted a Monte Carlo ana-
lysis using 1000 realizations and assuming a Gaussian error distribution for the regression coefficients a and b,
for all of 108 combinations. The results show an averaged value of 56.0 ± 7.7% for the fraction of T, which is
close to our ensemble mean. Therefore, uncertainties resulting from the LAI regression estimation can be
omitted for the global ET partitioning.

A large potential bias error in ET partitioning stems from I. Among the three interception data products, the
ratio I/(E+ T+ I) varies from 10% to 20%. Only limited direct observations of canopy interception loss have
been reported in the T/(E+ T+ I) studies for various regions of the globe [Barbour et al., 2005; Wilson et al.,
2000]. We analyzed the data from five long-term ET partitioning studies that measured at least two of the
three components of the ET flux and compared the results with the global I data sets we used. We find
that I/(E+ T+ I) generally remains some uncertainties in all the I data sets we used (supporting information
Table S5). Compared to the work on rainfall interception, there have been fewer studies on evaporation of
intercepted snow [Miralles et al., 2016]. The model community is yet to develop robust snow
interception/evaporation models [Miralles et al., 2010, 2016]. Resolving terrestrial interception remains critical
to constraining evapotranspiration partitioning estimates. For example, two isotope-based global ET parti-
tioning studies calculate similar T/(E+ T) values (>90% [Good et al., 2015; Jasechko et al., 2013]) but present
different T/(E+ T+ I) values (85 ± 5% and 64± 13%) because they report different interception fluxes. Better
constraining global land interception can improve T/(E+ T+ I) estimates.

Although four LAI products based on the AVHRR andMODIS satellites have been extensively validated by field
measurements, the spatial distributions, magnitudes, and temporal variations of LAI are somewhat different.
For example, the GLASS LAI data show statistically significant increasing trend of over 50% of vegetated lands
from the 1982 to 2009 period, while GIMMS3g data show a smaller trend value of 25% [Zhu et al., 2016]. These
discrepancies are not only caused by using different methodologies, different strategies, and different AVHRR
products in each LAI products but also raised from lacking of onboard calibration and orbital loss problem of
AVHRR sensors [Tucker et al., 2005; Zhu et al., 2016]. Further improvement of remote sensing LAI products at
high spatial and temporal resolutions will enable us to extrapolate the LAI regression to obtain spatially expli-
cit estimates of T/(E+ T+ I) across the globe and its temporal variability. Nevertheless, the regression between
T/(E+ T) and LAI suggests that vegetation density controls ET partitioning, and this control pattern varies
among vegetation classes.

Vegetation feedback is largely uncertain in global climate models in terms of future predictions. Currently,
most of the global climate models produce too small T/(E+ T+ I). The mean T/(E+ T+ I) for the 30 models
considered is 43% (Figure 4), which is more than 10% lower than the current result. The current approach pro-
vides a new constraint that can help modelers to reduce the uncertainty of vegetation control on the global
water cycle.

5. Conclusion

This study develops a new ET partitioning approach, through the combination of remote sensing, land sur-
face model, and LAI regression obtained from 64 in situ measurements. The T/(E+ T) is well represented as
a function of LAI. The ET estimated from GLEAM, CLM, and PML showed similar large-scale patterns, while I
estimated from CLM is significantly higher than that derived from PML and GLEAM. Based on global synthesis
of LAI control on ET partitioning and different ET products, the T/(E+ T+ I) ratio varies from 42.9% to 74.9%
among the 108 ensemble members considered, with an ensemble mean of 57.2 ± 6.8% at the global scale.
Further study on the role of interception is required because uncertainty in canopy interception loss estima-
tion is the largest source of bias in ET partitioning.
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